版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省莆田市荔城區(qū)擢英中學2023-2024學年中考沖刺卷數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù))中的x與y的部分對應值如表所示:x-1013y33下列結論:(1)abc<0(2)當x>1時,y的值隨x值的增大而減?。唬?)16a+4b+c<0(4)x=3是方程ax2+(b-1)x+c=0的一個根;其中正確的個數(shù)為()A.4個 B.3個 C.2個 D.1個2.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.3.函數(shù)(為常數(shù))的圖像上有三點,,,則函數(shù)值的大小關系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y14.如圖,將△ABC繞點C(0,-1)旋轉180°得到△A′B′C,設點A的坐標為(a,b),則點A′的坐標為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)5.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點,若x1<1,x2>2,則a的取值范圍是()A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<06.關于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣27.如果一組數(shù)據(jù)6、7、x、9、5的平均數(shù)是2x,那么這組數(shù)據(jù)的方差為()A.4 B.3 C.2 D.18.有三張正面分別標有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.9.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a>b>cB.一次函數(shù)y=ax+c的圖象不經第四象限C.m(am+b)+b<a(m是任意實數(shù))D.3b+2c>010.如圖,數(shù)軸A、B上兩點分別對應實數(shù)a、b,則下列結論正確的是()A.a+b>0 B.ab>0 C.1a+11.如圖,將△ABC繞點B順時針旋轉60°得△DBE,點C的對應點E給好落在AB的延長線上,連接AD,下列結論不一定正確的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE12.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A,B在反比例函數(shù)y=(x>0)的圖象上,點C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.14.如圖,在△ABC中,AB=AC,D、E、F分別為AB、BC、AC的中點,則下列結論:①△ADF≌△FEC;②四邊形ADEF為菱形;③.其中正確的結論是____________.(填寫所有正確結論的序號)15.如圖,ABCDE是正五邊形,已知AG=1,則FG+JH+CD=_____.16.在計算器上,按照下面如圖的程序進行操作:如表中的x與y分別是輸入的6個數(shù)及相應的計算結果:上面操作程序中所按的第三個鍵和第四個鍵分別是_____、_____.x﹣3﹣2﹣1012y﹣5﹣3﹣113517.中國人最先使用負數(shù),魏晉時期的數(shù)學家劉徽在“正負術”的注文中指出,可將算籌(小棍形狀的記數(shù)工具)正放表示正數(shù),斜放表示負數(shù).如圖,根據(jù)劉徽的這種表示法,觀察圖①,可推算圖②中所得的數(shù)值為_____.18.如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“校園詩歌大賽”結束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖部分信息如下:本次比賽參賽選手共有人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為;賽前規(guī)定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?8分,試判斷他能否獲獎,并說明理由;成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中1男1女的概率.20.(6分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.21.(6分)已知關于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一個根,求m的值和方程①的另一根;對于任意實數(shù)m,判斷方程①的根的情況,并說明理由.22.(8分)“垃圾不落地,城市更美麗”.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生“是否隨手丟垃圾”這一情況進行了問卷調查,統(tǒng)計結果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經常隨手丟垃圾三項.要求每位被調查的學生必須從以上三項中選一項且只能選一項.現(xiàn)將調查結果繪制成以下來不辜負不完整的統(tǒng)計圖.請你根據(jù)以上信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學生“是否隨手丟垃圾”情況的眾數(shù)是;(3)若該校七年級共有1500名學生,請你估計該年級學生中“經常隨手丟垃圾”的學生約有多少人?談談你的看法?23.(8分)先化簡,再求值:,其中m=2.24.(10分)請根據(jù)圖中提供的信息,回答下列問題:(1)一個水瓶與一個水杯分別是多少元?(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)25.(10分)為了弘揚學生愛國主義精神,充分展現(xiàn)新時期青少年良好的思想道德素質和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經典詩文誦讀比賽.九(1)班通過內部初選,選出了麗麗和張強兩位同學,但學校規(guī)定每班只有1個名額,經過老師與同學們商量,用所學的概率知識設計摸球游戲決定誰去,設計的游戲規(guī)則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.根據(jù)以上規(guī)則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.26.(12分)先化簡,再求值:,請你從﹣1≤x<3的范圍內選取一個適當?shù)恼麛?shù)作為x的值.27.(12分)如圖,已知∠AOB與點M、N求作一點P,使點P到邊OA、OB的距離相等,且PM=PN(保留作圖痕跡,不寫作法)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
(1)利用待定系數(shù)法求出二次函數(shù)解析式為y=-x2+x+3,即可判定正確;(2)求得對稱軸,即可判定此結論錯誤;(3)由當x=4和x=-1時對應的函數(shù)值相同,即可判定結論正確;(4)當x=3時,二次函數(shù)y=ax2+bx+c=3,即可判定正確.【詳解】(1)∵x=-1時y=-,x=0時,y=3,x=1時,y=,∴,解得∴abc<0,故正確;(2)∵y=-x2+x+3,∴對稱軸為直線x=-=,所以,當x>時,y的值隨x值的增大而減小,故錯誤;(3)∵對稱軸為直線x=,∴當x=4和x=-1時對應的函數(shù)值相同,∴16a+4b+c<0,故正確;(4)當x=3時,二次函數(shù)y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一個根,故正確;綜上所述,結論正確的是(1)(3)(4).故選:B.【點睛】本題考查了二次函數(shù)的性質,主要利用了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的增減性,二次函數(shù)與不等式,根據(jù)表中數(shù)據(jù)求出二次函數(shù)解析式是解題的關鍵.2、A【解析】
根據(jù)應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.3、A【解析】試題解析:∵函數(shù)y=(a為常數(shù))中,-a1-1<0,∴函數(shù)圖象的兩個分支分別在二、四象限,在每一象限內y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.4、D【解析】
設點A的坐標是(x,y),根據(jù)旋轉變換的對應點關于旋轉中心對稱,再根據(jù)中點公式列式求解即可.【詳解】根據(jù)題意,點A、A′關于點C對稱,
設點A的坐標是(x,y),
則
=0,
=-1,
解得x=-a,y=-b-2,
∴點A的坐標是(-a,-b-2).
故選D.【點睛】本題考查了利用旋轉進行坐標與圖形的變化,根據(jù)旋轉的性質得出點A、A′關于點C成中心對稱是解題的關鍵5、B【解析】由已知拋物線求出對稱軸,解:拋物線:,對稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.6、D【解析】
根據(jù)一元二次方程根與系數(shù)的關系列出方程求解即可.【詳解】設方程的兩根分別為x1,x1,
∵x1+(k1-4)x+k-1=0的兩實數(shù)根互為相反數(shù),
∴x1+x1,=-(k1-4)=0,解得k=±1,
當k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實數(shù)根,所以k=1舍去;
當k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個不相等的實數(shù)根;
∴k=-1.
故選D.【點睛】本題考查的是根與系數(shù)的關系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.7、A【解析】分析:先根據(jù)平均數(shù)的定義確定出x的值,再根據(jù)方差公式進行計算即可求出答案.詳解:根據(jù)題意,得:=2x解得:x=3,則這組數(shù)據(jù)為6、7、3、9、5,其平均數(shù)是6,所以這組數(shù)據(jù)的方差為[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故選A.點睛:此題考查了平均數(shù)和方差的定義.平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù).方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).8、C【解析】畫樹狀圖得:
∵共有6種等可能的結果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,
∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【點睛】運用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.9、D【解析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項錯誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經一、三、四象限,故此選項錯誤;C.當x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當x=1,y>0,∴當x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項正確;故選D.點睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關系,二次函數(shù)與方程之間的轉換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.10、C【解析】
本題要先觀察a,b在數(shù)軸上的位置,得b<-1<0<a<1,然后對四個選項逐一分析.【詳解】A、因為b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項A錯誤;B、因為b<0<a,所以ab<0,故選項B錯誤;C、因為b<-1<0<a<1,所以1a+1D、因為b<-1<0<a<1,所以1a-1故選C.【點睛】本題考查了實數(shù)與數(shù)軸的對應關系,數(shù)軸上右邊的數(shù)總是大于左邊的數(shù).11、C【解析】
利用旋轉的性質得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通過判斷△ABD為等邊三角形得到AD=AB,∠BAD=60°,則根據(jù)平行線的性質可判斷AD∥BC,從而得到∠DAC=∠C,于是可判斷∠DAC=∠E,接著利用AD=AB,BE=BC可判斷AD+BC=AE,利用∠CBE=60°,由于∠E的度數(shù)不確定,所以不能判定BC⊥DE.【詳解】∵△ABC繞點B順時針旋轉60°得△DBE,點C的對應點E恰好落在AB的延長線上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD為等邊三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有當∠E=30°時,BC⊥DE.故選C.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等邊三角形的性質.12、A【解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
過A作x軸垂線,過B作x軸垂線,求出A(1,1),B(2,),C(1,k),D(2,),將面積進行轉換S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB進而求解.【詳解】解:過A作x軸垂線,過B作x軸垂線,點A,B在反比例函數(shù)y=(x>0)的圖象上,點A,B的橫坐標分別為1,2,∴A(1,1),B(2,),∵AC∥BD∥y軸,∴C(1,k),D(2,),∵△OAC與△ABD的面積之和為,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案為1.【點睛】本題考查反比例函數(shù)的性質,k的幾何意義.能夠將三角形面積進行合理的轉換是解題的關鍵.14、①②③【解析】
①根據(jù)三角形的中位線定理可得出AD=FE、AF=FC、DF=EC,進而可證出△ADF≌△FEC(SSS),結論①正確;②根據(jù)三角形中位線定理可得出EF∥AB、EF=AD,進而可證出四邊形ADEF為平行四邊形,由AB=AC結合D、F分別為AB、AC的中點可得出AD=AF,進而可得出四邊形ADEF為菱形,結論②正確;③根據(jù)三角形中位線定理可得出DF∥BC、DF=BC,進而可得出△ADF∽△ABC,再利用相似三角形的性質可得出,結論③正確.此題得解.【詳解】解:①∵D、E、F分別為AB、BC、AC的中點,∴DE、DF、EF為△ABC的中位線,∴AD=AB=FE,AF=AC=FC,DF=BC=EC.在△ADF和△FEC中,,∴△ADF≌△FEC(SSS),結論①正確;②∵E、F分別為BC、AC的中點,∴EF為△ABC的中位線,∴EF∥AB,EF=AB=AD,∴四邊形ADEF為平行四邊形.∵AB=AC,D、F分別為AB、AC的中點,∴AD=AF,∴四邊形ADEF為菱形,結論②正確;③∵D、F分別為AB、AC的中點,∴DF為△ABC的中位線,∴DF∥BC,DF=BC,∴△ADF∽△ABC,∴,結論③正確.故答案為①②③.【點睛】本題考查了菱形的判定與性質、全等三角形的判定與性質、相似三角形的判定與性質以及三角形中位線定理,逐一分析三條結論的正誤是解題的關鍵.15、+1【解析】
根據(jù)對稱性可知:GJ∥BH,GB∥JH,∴四邊形JHBG是平行四邊形,∴JH=BG,同理可證:四邊形CDFB是平行四邊形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,設FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG?BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=(負根已經舍棄),∴BF=+1=,∴FG+JH+CD=+1.故答案為+1.16、+,1【解析】
根據(jù)表格中數(shù)據(jù)求出x、y之間的關系,即可得出答案.【詳解】解:根據(jù)表格中數(shù)據(jù)分析可得:x、y之間的關系為:y=2x+1,則按的第三個鍵和第四個鍵應是“+”“1”.故答案為+,1.【點睛】此題考查了有理數(shù)的運算,要求同學們能熟練應用計算器,會用科學記算器進行計算.17、【解析】試題分析:根據(jù)有理數(shù)的加法,可得圖②中表示(+2)+(﹣5)=﹣1,故答案為﹣1.考點:正數(shù)和負數(shù)18、5【解析】
作輔助線,構建全等三角形和高線DH,設CM=a,根據(jù)等腰直角三角形的性質和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構建全等三角形和高線DH,設CM=a,根據(jù)等腰直角三角形的性質和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結論.,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結論.【詳解】解:過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G,設CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC?DH=10,?2a?DH=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四邊形DHMG為矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或?5(舍),故答案為5.【點睛】本題考查了等腰三角形的判定與性質、全等三角形的判定與性質、三角形面積的計算;證明三角形全等得出AG=CH是解決問題的關鍵,并利用方程的思想解決問題.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)50,30%;(2)不能,理由見解析;(3)P=【解析】【分析】(1)由直方圖可知59.5~69.5分數(shù)段有5人,由扇形統(tǒng)計圖可知這一分數(shù)段人占10%,據(jù)此可得選手總數(shù),然后求出89.5~99.5這一分數(shù)段所占的百分比,用1減去其他分數(shù)段的百分比即可得到分數(shù)段69.5~79.5所占的百分比;(2)觀察可知79.5~99.5這一分數(shù)段的人數(shù)占了60%,據(jù)此即可判斷出該選手是否獲獎;(3)畫樹狀圖得到所有可能的情況,再找出符合條件的情況后,用概率公式進行求解即可.【詳解】(1)本次比賽選手共有(2+3)÷10%=50(人),“89.5~99.5”這一組人數(shù)占百分比為:(8+4)÷50×100%=24%,所以“69.5~79.5”這一組人數(shù)占總人數(shù)的百分比為:1-10%-24%-36%=30%,故答案為50,30%;(2)不能;由統(tǒng)計圖知,79.5~89.5和89.5~99.5兩組占參賽選手60%,而78<79.5,所以他不能獲獎;(3)由題意得樹狀圖如下由樹狀圖知,共有12種等可能結果,其中恰好選中1男1女的共有8種結果,故P==.【點睛】本題考查了直方圖、扇形圖、概率,結合統(tǒng)計圖找到必要信息進行解題是關鍵.20、(1)見解析;(2)2π.【解析】
證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【點睛】本題考查了切線的判定和性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了弧長公式.21、(1)方程的另一根為x=2;(2)方程總有兩個不等的實數(shù)根,理由見解析.【解析】試題分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一個根;(2)利用一元二次方程根的情況可以轉化為判別式△與1的關系進行判斷.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有兩個不相等的實數(shù)根.考點:本題考查的是根的判別式,一元二次方程的解的定義,解一元二次方程點評:解答本題的關鍵是熟練掌握一元二次方程根的情況與判別式△的關系:當△>1,方程有兩個不相等的實數(shù)根;當△=1,方程有兩個相等的實數(shù)根;當△<1,方程沒有實數(shù)根22、(1)補全圖形見解析;(2)B;(3)估計該年級學生中“經常隨手丟垃圾”的學生約有75人,就該年級經常隨手丟垃圾的學生人數(shù)看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【解析】
(1)根據(jù)被調查的總人數(shù)求出C情況的人數(shù)與B情況人數(shù)所占比例即可;(2)根據(jù)眾數(shù)的定義求解即可;(3)該年級學生中“經常隨手丟垃圾”的學生=總人數(shù)×C情況的比值.【詳解】(1)∵被調查的總人數(shù)為60÷30%=200人,∴C情況的人數(shù)為200﹣(60+130)=10人,B情況人數(shù)所占比例為×100%=65%,補全圖形如下:(2)由條形圖知,B情況出現(xiàn)次數(shù)最多,所以眾數(shù)為B,故答案為B.(3)1500×5%=75,答:估計該年級學生中“經常隨手丟垃圾”的學生約有75人,就該年級經常隨手丟垃圾的學生人數(shù)看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【點睛】本題考查了眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖,解題的關鍵是熟練的掌握眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖的相關知識點.23、,原式.【解析】
原式括號中兩項通分并利用同分母分式的減法法則計算,約分得到最簡結果,把m的值代入計算即可求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版木地板電商平臺入駐與銷售合同3篇
- 二零二五年度農業(yè)種植節(jié)水灌溉技術服務合同標準
- 二零二五年度寵物貓寵物用品線上商城合作合同4篇
- 二零二五年度土地儲備開發(fā)土地征用補償合同
- 2025年銷售總監(jiān)勞動合同模板:業(yè)績提升與團隊建設策略3篇
- 2025年度健康醫(yī)療大數(shù)據(jù)應用合同范本2篇
- 二手房買賣協(xié)議規(guī)范文本2024版版B版
- 二零二五年度工業(yè)用地收儲補償合同3篇
- 二零二五年度女方離婚協(xié)議書制作參考模板
- 2025年度農民工職業(yè)培訓合作服務合同模板
- 匯款賬戶變更協(xié)議
- 實體瘤療效評價標準(RECIST11)
- 電力系統(tǒng)動態(tài)仿真與建模
- 蝦皮shopee新手賣家考試題庫及答案
- 四川省宜賓市2023-2024學年八年級上學期期末義務教育階段教學質量監(jiān)測英語試題
- 價值醫(yī)療的概念 實踐及其實現(xiàn)路徑
- 2024年中國華能集團燃料有限公司招聘筆試參考題庫含答案解析
- 《紅樓夢》中的男性形象解讀
- 安全生產技術規(guī)范 第49部分:加油站 DB50-T 867.49-2023
- 《三國演義》中的語言藝術:詩詞歌賦的應用
- 腸外營養(yǎng)液的合理配制
評論
0/150
提交評論