版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省莆田市荔城區(qū)擢英中學(xué)2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù))中的x與y的部分對應(yīng)值如表所示:x-1013y33下列結(jié)論:(1)abc<0(2)當(dāng)x>1時,y的值隨x值的增大而減?。唬?)16a+4b+c<0(4)x=3是方程ax2+(b-1)x+c=0的一個根;其中正確的個數(shù)為()A.4個 B.3個 C.2個 D.1個2.要組織一次排球邀請賽,參賽的每個隊(duì)之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設(shè)比賽組織者應(yīng)邀請個隊(duì)參賽,則滿足的關(guān)系式為()A. B. C. D.3.函數(shù)(為常數(shù))的圖像上有三點(diǎn),,,則函數(shù)值的大小關(guān)系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y14.如圖,將△ABC繞點(diǎn)C(0,-1)旋轉(zhuǎn)180°得到△A′B′C,設(shè)點(diǎn)A的坐標(biāo)為(a,b),則點(diǎn)A′的坐標(biāo)為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)5.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點(diǎn),若x1<1,x2>2,則a的取值范圍是()A.a(chǎn)<3 B.0<a<3 C.a(chǎn)>﹣3 D.﹣3<a<06.關(guān)于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣27.如果一組數(shù)據(jù)6、7、x、9、5的平均數(shù)是2x,那么這組數(shù)據(jù)的方差為()A.4 B.3 C.2 D.18.有三張正面分別標(biāo)有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.9.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a(chǎn)>b>cB.一次函數(shù)y=ax+c的圖象不經(jīng)第四象限C.m(am+b)+b<a(m是任意實(shí)數(shù))D.3b+2c>010.如圖,數(shù)軸A、B上兩點(diǎn)分別對應(yīng)實(shí)數(shù)a、b,則下列結(jié)論正確的是()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.1a+11.如圖,將△ABC繞點(diǎn)B順時針旋轉(zhuǎn)60°得△DBE,點(diǎn)C的對應(yīng)點(diǎn)E給好落在AB的延長線上,連接AD,下列結(jié)論不一定正確的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE12.如圖,⊙O的直徑AB=2,C是弧AB的中點(diǎn),AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點(diǎn)A,B在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.14.如圖,在△ABC中,AB=AC,D、E、F分別為AB、BC、AC的中點(diǎn),則下列結(jié)論:①△ADF≌△FEC;②四邊形ADEF為菱形;③.其中正確的結(jié)論是____________.(填寫所有正確結(jié)論的序號)15.如圖,ABCDE是正五邊形,已知AG=1,則FG+JH+CD=_____.16.在計算器上,按照下面如圖的程序進(jìn)行操作:如表中的x與y分別是輸入的6個數(shù)及相應(yīng)的計算結(jié)果:上面操作程序中所按的第三個鍵和第四個鍵分別是_____、_____.x﹣3﹣2﹣1012y﹣5﹣3﹣113517.中國人最先使用負(fù)數(shù),魏晉時期的數(shù)學(xué)家劉徽在“正負(fù)術(shù)”的注文中指出,可將算籌(小棍形狀的記數(shù)工具)正放表示正數(shù),斜放表示負(fù)數(shù).如圖,根據(jù)劉徽的這種表示法,觀察圖①,可推算圖②中所得的數(shù)值為_____.18.如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)“校園詩歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖部分信息如下:本次比賽參賽選手共有人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為;賽前規(guī)定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?8分,試判斷他能否獲獎,并說明理由;成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中1男1女的概率.20.(6分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點(diǎn)D,連接AD,過D作AC的垂線,交AC邊于點(diǎn)E,交AB邊的延長線于點(diǎn)F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.21.(6分)已知關(guān)于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一個根,求m的值和方程①的另一根;對于任意實(shí)數(shù)m,判斷方程①的根的情況,并說明理由.22.(8分)“垃圾不落地,城市更美麗”.某中學(xué)為了了解七年級學(xué)生對這一倡議的落實(shí)情況,學(xué)校安排政教處在七年級學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對學(xué)生“是否隨手丟垃圾”這一情況進(jìn)行了問卷調(diào)查,統(tǒng)計結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項(xiàng).要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計圖.請你根據(jù)以上信息,解答下列問題:(1)補(bǔ)全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學(xué)生“是否隨手丟垃圾”情況的眾數(shù)是;(3)若該校七年級共有1500名學(xué)生,請你估計該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?3.(8分)先化簡,再求值:,其中m=2.24.(10分)請根據(jù)圖中提供的信息,回答下列問題:(1)一個水瓶與一個水杯分別是多少元?(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)25.(10分)為了弘揚(yáng)學(xué)生愛國主義精神,充分展現(xiàn)新時期青少年良好的思想道德素質(zhì)和精神風(fēng)貌,豐富學(xué)生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經(jīng)典詩文誦讀比賽.九(1)班通過內(nèi)部初選,選出了麗麗和張強(qiáng)兩位同學(xué),但學(xué)校規(guī)定每班只有1個名額,經(jīng)過老師與同學(xué)們商量,用所學(xué)的概率知識設(shè)計摸球游戲決定誰去,設(shè)計的游戲規(guī)則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強(qiáng)從B箱摸一個球進(jìn)行試驗(yàn),若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強(qiáng)去;若兩人摸出球顏色不一樣,則放回重復(fù)以上動作,直到分出勝負(fù)為止.根據(jù)以上規(guī)則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.26.(12分)先化簡,再求值:,請你從﹣1≤x<3的范圍內(nèi)選取一個適當(dāng)?shù)恼麛?shù)作為x的值.27.(12分)如圖,已知∠AOB與點(diǎn)M、N求作一點(diǎn)P,使點(diǎn)P到邊OA、OB的距離相等,且PM=PN(保留作圖痕跡,不寫作法)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
(1)利用待定系數(shù)法求出二次函數(shù)解析式為y=-x2+x+3,即可判定正確;(2)求得對稱軸,即可判定此結(jié)論錯誤;(3)由當(dāng)x=4和x=-1時對應(yīng)的函數(shù)值相同,即可判定結(jié)論正確;(4)當(dāng)x=3時,二次函數(shù)y=ax2+bx+c=3,即可判定正確.【詳解】(1)∵x=-1時y=-,x=0時,y=3,x=1時,y=,∴,解得∴abc<0,故正確;(2)∵y=-x2+x+3,∴對稱軸為直線x=-=,所以,當(dāng)x>時,y的值隨x值的增大而減小,故錯誤;(3)∵對稱軸為直線x=,∴當(dāng)x=4和x=-1時對應(yīng)的函數(shù)值相同,∴16a+4b+c<0,故正確;(4)當(dāng)x=3時,二次函數(shù)y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一個根,故正確;綜上所述,結(jié)論正確的是(1)(3)(4).故選:B.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),主要利用了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的增減性,二次函數(shù)與不等式,根據(jù)表中數(shù)據(jù)求出二次函數(shù)解析式是解題的關(guān)鍵.2、A【解析】
根據(jù)應(yīng)用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點(diǎn)睛】本題主要考察一元二次方程的應(yīng)用題,正確理解題意是解題的關(guān)鍵.3、A【解析】試題解析:∵函數(shù)y=(a為常數(shù))中,-a1-1<0,∴函數(shù)圖象的兩個分支分別在二、四象限,在每一象限內(nèi)y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.4、D【解析】
設(shè)點(diǎn)A的坐標(biāo)是(x,y),根據(jù)旋轉(zhuǎn)變換的對應(yīng)點(diǎn)關(guān)于旋轉(zhuǎn)中心對稱,再根據(jù)中點(diǎn)公式列式求解即可.【詳解】根據(jù)題意,點(diǎn)A、A′關(guān)于點(diǎn)C對稱,
設(shè)點(diǎn)A的坐標(biāo)是(x,y),
則
=0,
=-1,
解得x=-a,y=-b-2,
∴點(diǎn)A的坐標(biāo)是(-a,-b-2).
故選D.【點(diǎn)睛】本題考查了利用旋轉(zhuǎn)進(jìn)行坐標(biāo)與圖形的變化,根據(jù)旋轉(zhuǎn)的性質(zhì)得出點(diǎn)A、A′關(guān)于點(diǎn)C成中心對稱是解題的關(guān)鍵5、B【解析】由已知拋物線求出對稱軸,解:拋物線:,對稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.6、D【解析】
根據(jù)一元二次方程根與系數(shù)的關(guān)系列出方程求解即可.【詳解】設(shè)方程的兩根分別為x1,x1,
∵x1+(k1-4)x+k-1=0的兩實(shí)數(shù)根互為相反數(shù),
∴x1+x1,=-(k1-4)=0,解得k=±1,
當(dāng)k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實(shí)數(shù)根,所以k=1舍去;
當(dāng)k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個不相等的實(shí)數(shù)根;
∴k=-1.
故選D.【點(diǎn)睛】本題考查的是根與系數(shù)的關(guān)系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.7、A【解析】分析:先根據(jù)平均數(shù)的定義確定出x的值,再根據(jù)方差公式進(jìn)行計算即可求出答案.詳解:根據(jù)題意,得:=2x解得:x=3,則這組數(shù)據(jù)為6、7、3、9、5,其平均數(shù)是6,所以這組數(shù)據(jù)的方差為[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故選A.點(diǎn)睛:此題考查了平均數(shù)和方差的定義.平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù).方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).8、C【解析】畫樹狀圖得:
∵共有6種等可能的結(jié)果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,
∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【點(diǎn)睛】運(yùn)用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.9、D【解析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項(xiàng)錯誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經(jīng)一、三、四象限,故此選項(xiàng)錯誤;C.當(dāng)x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項(xiàng)錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當(dāng)x=1,y>0,∴當(dāng)x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項(xiàng)正確;故選D.點(diǎn)睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)與方程之間的轉(zhuǎn)換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.10、C【解析】
本題要先觀察a,b在數(shù)軸上的位置,得b<-1<0<a<1,然后對四個選項(xiàng)逐一分析.【詳解】A、因?yàn)閎<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項(xiàng)A錯誤;B、因?yàn)閎<0<a,所以ab<0,故選項(xiàng)B錯誤;C、因?yàn)閎<-1<0<a<1,所以1a+1D、因?yàn)閎<-1<0<a<1,所以1a-1故選C.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸的對應(yīng)關(guān)系,數(shù)軸上右邊的數(shù)總是大于左邊的數(shù).11、C【解析】
利用旋轉(zhuǎn)的性質(zhì)得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通過判斷△ABD為等邊三角形得到AD=AB,∠BAD=60°,則根據(jù)平行線的性質(zhì)可判斷AD∥BC,從而得到∠DAC=∠C,于是可判斷∠DAC=∠E,接著利用AD=AB,BE=BC可判斷AD+BC=AE,利用∠CBE=60°,由于∠E的度數(shù)不確定,所以不能判定BC⊥DE.【詳解】∵△ABC繞點(diǎn)B順時針旋轉(zhuǎn)60°得△DBE,點(diǎn)C的對應(yīng)點(diǎn)E恰好落在AB的延長線上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD為等邊三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有當(dāng)∠E=30°時,BC⊥DE.故選C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等邊三角形的性質(zhì).12、A【解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點(diǎn),∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內(nèi)切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
過A作x軸垂線,過B作x軸垂線,求出A(1,1),B(2,),C(1,k),D(2,),將面積進(jìn)行轉(zhuǎn)換S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB進(jìn)而求解.【詳解】解:過A作x軸垂線,過B作x軸垂線,點(diǎn)A,B在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)A,B的橫坐標(biāo)分別為1,2,∴A(1,1),B(2,),∵AC∥BD∥y軸,∴C(1,k),D(2,),∵△OAC與△ABD的面積之和為,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案為1.【點(diǎn)睛】本題考查反比例函數(shù)的性質(zhì),k的幾何意義.能夠?qū)⑷切蚊娣e進(jìn)行合理的轉(zhuǎn)換是解題的關(guān)鍵.14、①②③【解析】
①根據(jù)三角形的中位線定理可得出AD=FE、AF=FC、DF=EC,進(jìn)而可證出△ADF≌△FEC(SSS),結(jié)論①正確;②根據(jù)三角形中位線定理可得出EF∥AB、EF=AD,進(jìn)而可證出四邊形ADEF為平行四邊形,由AB=AC結(jié)合D、F分別為AB、AC的中點(diǎn)可得出AD=AF,進(jìn)而可得出四邊形ADEF為菱形,結(jié)論②正確;③根據(jù)三角形中位線定理可得出DF∥BC、DF=BC,進(jìn)而可得出△ADF∽△ABC,再利用相似三角形的性質(zhì)可得出,結(jié)論③正確.此題得解.【詳解】解:①∵D、E、F分別為AB、BC、AC的中點(diǎn),∴DE、DF、EF為△ABC的中位線,∴AD=AB=FE,AF=AC=FC,DF=BC=EC.在△ADF和△FEC中,,∴△ADF≌△FEC(SSS),結(jié)論①正確;②∵E、F分別為BC、AC的中點(diǎn),∴EF為△ABC的中位線,∴EF∥AB,EF=AB=AD,∴四邊形ADEF為平行四邊形.∵AB=AC,D、F分別為AB、AC的中點(diǎn),∴AD=AF,∴四邊形ADEF為菱形,結(jié)論②正確;③∵D、F分別為AB、AC的中點(diǎn),∴DF為△ABC的中位線,∴DF∥BC,DF=BC,∴△ADF∽△ABC,∴,結(jié)論③正確.故答案為①②③.【點(diǎn)睛】本題考查了菱形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及三角形中位線定理,逐一分析三條結(jié)論的正誤是解題的關(guān)鍵.15、+1【解析】
根據(jù)對稱性可知:GJ∥BH,GB∥JH,∴四邊形JHBG是平行四邊形,∴JH=BG,同理可證:四邊形CDFB是平行四邊形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,設(shè)FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG?BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=(負(fù)根已經(jīng)舍棄),∴BF=+1=,∴FG+JH+CD=+1.故答案為+1.16、+,1【解析】
根據(jù)表格中數(shù)據(jù)求出x、y之間的關(guān)系,即可得出答案.【詳解】解:根據(jù)表格中數(shù)據(jù)分析可得:x、y之間的關(guān)系為:y=2x+1,則按的第三個鍵和第四個鍵應(yīng)是“+”“1”.故答案為+,1.【點(diǎn)睛】此題考查了有理數(shù)的運(yùn)算,要求同學(xué)們能熟練應(yīng)用計算器,會用科學(xué)記算器進(jìn)行計算.17、【解析】試題分析:根據(jù)有理數(shù)的加法,可得圖②中表示(+2)+(﹣5)=﹣1,故答案為﹣1.考點(diǎn):正數(shù)和負(fù)數(shù)18、5【解析】
作輔助線,構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.【詳解】解:過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G,設(shè)CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC?DH=10,?2a?DH=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四邊形DHMG為矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或?5(舍),故答案為5.【點(diǎn)睛】本題考查了等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形面積的計算;證明三角形全等得出AG=CH是解決問題的關(guān)鍵,并利用方程的思想解決問題.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)50,30%;(2)不能,理由見解析;(3)P=【解析】【分析】(1)由直方圖可知59.5~69.5分?jǐn)?shù)段有5人,由扇形統(tǒng)計圖可知這一分?jǐn)?shù)段人占10%,據(jù)此可得選手總數(shù),然后求出89.5~99.5這一分?jǐn)?shù)段所占的百分比,用1減去其他分?jǐn)?shù)段的百分比即可得到分?jǐn)?shù)段69.5~79.5所占的百分比;(2)觀察可知79.5~99.5這一分?jǐn)?shù)段的人數(shù)占了60%,據(jù)此即可判斷出該選手是否獲獎;(3)畫樹狀圖得到所有可能的情況,再找出符合條件的情況后,用概率公式進(jìn)行求解即可.【詳解】(1)本次比賽選手共有(2+3)÷10%=50(人),“89.5~99.5”這一組人數(shù)占百分比為:(8+4)÷50×100%=24%,所以“69.5~79.5”這一組人數(shù)占總?cè)藬?shù)的百分比為:1-10%-24%-36%=30%,故答案為50,30%;(2)不能;由統(tǒng)計圖知,79.5~89.5和89.5~99.5兩組占參賽選手60%,而78<79.5,所以他不能獲獎;(3)由題意得樹狀圖如下由樹狀圖知,共有12種等可能結(jié)果,其中恰好選中1男1女的共有8種結(jié)果,故P==.【點(diǎn)睛】本題考查了直方圖、扇形圖、概率,結(jié)合統(tǒng)計圖找到必要信息進(jìn)行解題是關(guān)鍵.20、(1)見解析;(2)2π.【解析】
證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【點(diǎn)睛】本題考查了切線的判定和性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.運(yùn)用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了弧長公式.21、(1)方程的另一根為x=2;(2)方程總有兩個不等的實(shí)數(shù)根,理由見解析.【解析】試題分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一個根;(2)利用一元二次方程根的情況可以轉(zhuǎn)化為判別式△與1的關(guān)系進(jìn)行判斷.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有兩個不相等的實(shí)數(shù)根.考點(diǎn):本題考查的是根的判別式,一元二次方程的解的定義,解一元二次方程點(diǎn)評:解答本題的關(guān)鍵是熟練掌握一元二次方程根的情況與判別式△的關(guān)系:當(dāng)△>1,方程有兩個不相等的實(shí)數(shù)根;當(dāng)△=1,方程有兩個相等的實(shí)數(shù)根;當(dāng)△<1,方程沒有實(shí)數(shù)根22、(1)補(bǔ)全圖形見解析;(2)B;(3)估計該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有75人,就該年級經(jīng)常隨手丟垃圾的學(xué)生人數(shù)看出仍需要加強(qiáng)公共衛(wèi)生教育、宣傳和監(jiān)督.【解析】
(1)根據(jù)被調(diào)查的總?cè)藬?shù)求出C情況的人數(shù)與B情況人數(shù)所占比例即可;(2)根據(jù)眾數(shù)的定義求解即可;(3)該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生=總?cè)藬?shù)×C情況的比值.【詳解】(1)∵被調(diào)查的總?cè)藬?shù)為60÷30%=200人,∴C情況的人數(shù)為200﹣(60+130)=10人,B情況人數(shù)所占比例為×100%=65%,補(bǔ)全圖形如下:(2)由條形圖知,B情況出現(xiàn)次數(shù)最多,所以眾數(shù)為B,故答案為B.(3)1500×5%=75,答:估計該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有75人,就該年級經(jīng)常隨手丟垃圾的學(xué)生人數(shù)看出仍需要加強(qiáng)公共衛(wèi)生教育、宣傳和監(jiān)督.【點(diǎn)睛】本題考查了眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握眾數(shù)與扇形統(tǒng)計圖與條形統(tǒng)計圖的相關(guān)知識點(diǎn).23、,原式.【解析】
原式括號中兩項(xiàng)通分并利用同分母分式的減法法則計算,約分得到最簡結(jié)果,把m的值代入計算即可求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年全球水果仁產(chǎn)品行業(yè)營銷渠道及競爭前景預(yù)測報告
- 2024-2030年全球及中國靜電消除設(shè)備(電離器)行業(yè)應(yīng)用前景及投資戰(zhàn)略研究報告
- 2024-2030年全球及中國觀賞魚飼料棒行業(yè)銷售策略及競爭趨勢預(yù)測報告
- 2024-2030年全球及中國肌酸保健品行業(yè)銷售策略及營銷前景預(yù)測報告
- 2024-2030年全球及中國液壓隔膜閥行業(yè)需求動態(tài)及前景規(guī)劃分析報告
- 2024年房屋裝修注意事項(xiàng):合同條款速覽
- 2024-2030年全球與中國三文魚PDRN行業(yè)發(fā)展現(xiàn)狀及未來前景趨勢報告
- 2024-2030年中用碘行業(yè)市場供給分析及投資價值研究報告
- 2024-2030年中國集成吊頂行業(yè)宣傳推廣模式及發(fā)展策略研究報告
- 2024-2030年中國防雷避雷產(chǎn)品行業(yè)競爭格局及發(fā)展策略分析報告
- 選修課-足球教案
- 充電樁運(yùn)維合同(2篇)
- 美團(tuán) 課程設(shè)計
- 骨質(zhì)疏松的分級診療及醫(yī)聯(lián)體的建設(shè)方案
- 2024年貴州黔東南州直事業(yè)單位遴選工作人員42人歷年高頻難、易錯點(diǎn)500題模擬試題附帶答案詳解
- 公務(wù)員2022年國考《申論》真題(副省級)及參考答案
- 臨建板房搬遷合同模板
- 少兒美術(shù)課件國家寶藏系列《鳳冠》
- 2024年婦女保健技能大賽理論考試題庫-上(單選題)
- 慢性阻塞性肺疾病急性加重圍出院期管理與隨訪指南(2024年版)解讀
- 2024國際海外銷售代理合同范本
評論
0/150
提交評論