2023-2024學(xué)年甘肅省蘭州市聯(lián)片重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷含解析_第1頁(yè)
2023-2024學(xué)年甘肅省蘭州市聯(lián)片重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷含解析_第2頁(yè)
2023-2024學(xué)年甘肅省蘭州市聯(lián)片重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷含解析_第3頁(yè)
2023-2024學(xué)年甘肅省蘭州市聯(lián)片重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷含解析_第4頁(yè)
2023-2024學(xué)年甘肅省蘭州市聯(lián)片重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年甘肅省蘭州市聯(lián)片重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)最后一模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.據(jù)悉,超級(jí)磁力風(fēng)力發(fā)電機(jī)可以大幅度提升風(fēng)力發(fā)電效率,但其造價(jià)高昂,每座磁力風(fēng)力發(fā)電機(jī),其建造花費(fèi)估計(jì)要5300萬(wàn)美元,“5300萬(wàn)”用科學(xué)記數(shù)法可表示為()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×1082.關(guān)于x的方程12x=kA.0或123.下列運(yùn)算正確的是()A.2a+3a=5a2B.(a3)3=a9C.a(chǎn)2?a4=a8D.a(chǎn)6÷a3=a24.如圖,?ABCD的對(duì)角線AC、BD相交于點(diǎn)O,且AC+BD=16,CD=6,則△ABO的周長(zhǎng)是()A.10 B.14 C.20 D.225.在實(shí)數(shù)﹣3.5、2、0、﹣4中,最小的數(shù)是()A.﹣3.5 B.2 C.0 D.﹣46.已知拋物線y=ax2+bx+c的圖象如圖所示,頂點(diǎn)為(4,6),則下列說法錯(cuò)誤的是()A.b2>4ac B.a(chǎn)x2+bx+c≤6C.若點(diǎn)(2,m)(5,n)在拋物線上,則m>n D.8a+b=07.一個(gè)半徑為24的扇形的弧長(zhǎng)等于20π,則這個(gè)扇形的圓心角是()A.120° B.135° C.150° D.165°8.如圖,在直角坐標(biāo)系中,直線與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線()交于點(diǎn)C,過點(diǎn)C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:①;②當(dāng)0<x<3時(shí),;③如圖,當(dāng)x=3時(shí),EF=;④當(dāng)x>0時(shí),隨x的增大而增大,隨x的增大而減?。渲姓_結(jié)論的個(gè)數(shù)是()A.1 B.2 C.3 D.49.某反比例函數(shù)的圖象經(jīng)過點(diǎn)(-2,3),則此函數(shù)圖象也經(jīng)過()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)10.我國(guó)的釣魚島面積約為4400000m2,用科學(xué)記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×107二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若一個(gè)圓錐的側(cè)面展開圖是一個(gè)半徑為6cm,圓心角為120°的扇形,則該圓錐的側(cè)面面積為______cm(結(jié)果保留π).12.如圖AB是直徑,C、D、E為圓周上的點(diǎn),則______.13.如圖,在正方形ABCD中,AD=5,點(diǎn)E,F(xiàn)是正方形ABCD內(nèi)的兩點(diǎn),且AE=FC=3,BE=DF=4,則EF的長(zhǎng)為__________.14.如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點(diǎn)D,交OB于點(diǎn)C,連接CD交直線OA于點(diǎn)E,若∠B=30°,則線段AE的長(zhǎng)為.15.若4a+3b=1,則8a+6b-3的值為______.16.如圖,在4×4的方格紙中(共有16個(gè)小方格),每個(gè)小方格都是邊長(zhǎng)為1的正方形.O、A、B分別是小正方形的頂點(diǎn),則扇形OAB周長(zhǎng)等于_____.(結(jié)果保留根號(hào)及π).三、解答題(共8題,共72分)17.(8分)(1)如圖1,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點(diǎn)G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點(diǎn)E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點(diǎn)M,探究AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在(2)的基礎(chǔ)上,若AB=m,BC=n,其他條件不變,請(qǐng)直接寫出AE與BF的數(shù)量關(guān)系;.18.(8分)如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,(1)求k的值;(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).19.(8分)一件上衣,每件原價(jià)500元,第一次降價(jià)后,銷售甚慢,于是再次進(jìn)行大幅降價(jià),第二次降價(jià)的百分率是第一次降價(jià)的百分率的2倍,結(jié)果這批上衣以每件240元的價(jià)格迅速售出,求兩次降價(jià)的百分率各是多少.20.(8分)我市某學(xué)校在“行讀石鼓閣”研學(xué)活動(dòng)中,參觀了我市中華石鼓園,石鼓閣是寶雞城市新地標(biāo).建筑面積7200平方米,為我國(guó)西北第一高閣.秦漢高臺(tái)門闕的建筑風(fēng)格,追求穩(wěn)定之中的飛揚(yáng)靈動(dòng),深厚之中的巧妙組合,使景觀功能和標(biāo)志功能融為一體.小亮想知道石鼓閣的高是多少,他和同學(xué)李梅對(duì)石鼓閣進(jìn)行測(cè)量.測(cè)量方案如下:如圖,李梅在小亮和“石鼓閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個(gè)標(biāo)記,這個(gè)標(biāo)記在直線BM上的對(duì)應(yīng)位置為點(diǎn)C,鏡子不動(dòng),李梅看著鏡面上的標(biāo)記,她來(lái)回走動(dòng),走到點(diǎn)D時(shí),看到“石鼓閣”頂端點(diǎn)A在鏡面中的像與鏡面上的標(biāo)記重合,這時(shí),測(cè)得李梅眼睛與地面的高度ED=1.6米,CD=2.2米,然后,在陽(yáng)光下,小亮從D點(diǎn)沿DM方向走了29.4米,此時(shí)“石鼓閣”影子與小亮的影子頂端恰好重合,測(cè)得小亮身高1.7米,影長(zhǎng)FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測(cè)量時(shí)所使用的平面鏡的厚度忽略不計(jì),請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出“石鼓閣”的高AB的長(zhǎng)度.21.(8分)如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.求證:△ADE∽△ABC;若AD=3,AB=5,求的值.22.(10分)問題提出(1)如圖1,正方形ABCD的對(duì)角線交于點(diǎn)O,△CDE是邊長(zhǎng)為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長(zhǎng)為6的正方形ABCD中,以CD為直徑作半圓O,點(diǎn)P為弧CD上一動(dòng)點(diǎn),求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風(fēng)景線,是因?yàn)楦G洞除了它的堅(jiān)固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點(diǎn)家住延安農(nóng)村的一對(duì)即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高M(jìn)N=1.2m(N為AD的中點(diǎn),MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認(rèn)為誰(shuí)的說法正確?請(qǐng)通過計(jì)算求出門角B到門窗弓形弧AD的最大距離.23.(12分)“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)根據(jù)所給信息,解答以下問題:(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是_____度;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在_____等級(jí);(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?24.如圖,△ABC中,點(diǎn)D在邊AB上,滿足∠ACD=∠ABC,若AC=,AD=1,求DB的長(zhǎng).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:5300萬(wàn)=53000000=.故選C.【點(diǎn)睛】在把一個(gè)絕對(duì)值較大的數(shù)用科學(xué)記數(shù)法表示為的形式時(shí),我們要注意兩點(diǎn):①必須滿足:;②比原來(lái)的數(shù)的整數(shù)位數(shù)少1(也可以通過小數(shù)點(diǎn)移位來(lái)確定).2、A【解析】方程兩邊同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程無(wú)解,∴當(dāng)整式方程無(wú)解時(shí),2k-1=0,k=12當(dāng)分式方程無(wú)解時(shí),①x=0時(shí),k無(wú)解,②x=-3時(shí),k=0,∴k=0或12故選A.3、B【解析】

直接利用同底數(shù)冪的乘除運(yùn)算法則以及冪的乘方運(yùn)算法則、合并同類項(xiàng)法則分別化簡(jiǎn)得出答案.【詳解】A、2a+3a=5a,故此選項(xiàng)錯(cuò)誤;B、(a3)3=a9,故此選項(xiàng)正確;C、a2?a4=a6,故此選項(xiàng)錯(cuò)誤;D、a6÷a3=a3,故此選項(xiàng)錯(cuò)誤.故選:B.【點(diǎn)睛】此題主要考查了同底數(shù)冪的乘除運(yùn)算以及合并同類項(xiàng)和冪的乘方運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.4、B【解析】

直接利用平行四邊形的性質(zhì)得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的長(zhǎng),進(jìn)而得出答案.【詳解】∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周長(zhǎng)是:1.故選B.【點(diǎn)睛】平行四邊形的性質(zhì)掌握要熟練,找到等值代換即可求解.5、D【解析】

根據(jù)任意兩個(gè)實(shí)數(shù)都可以比較大?。龑?shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對(duì)值大的反而小進(jìn)行比較即可【詳解】在實(shí)數(shù)﹣3.5、2、0、﹣4中,最小的數(shù)是﹣4,故選D.【點(diǎn)睛】掌握實(shí)數(shù)比較大小的法則6、C【解析】觀察可得,拋物線與x軸有兩個(gè)交點(diǎn),可得,即,選項(xiàng)A正確;拋物線開口向下且頂點(diǎn)為(4,6)可得拋物線的最大值為6,即,選項(xiàng)B正確;由題意可知拋物線的對(duì)稱軸為x=4,因?yàn)?-2=2,5-4=1,且1<2,所以可得m<n,選項(xiàng)C錯(cuò)誤;因?qū)ΨQ軸,即可得8a+b=0,選項(xiàng)D正確,故選C.點(diǎn)睛:本題主要考查了二次函數(shù)y=ax2+bx+c圖象與系數(shù)的關(guān)系,解決本題的關(guān)鍵是從圖象中獲取信息,利用數(shù)形結(jié)合思想解決問題,本題難度適中.7、C【解析】

這個(gè)扇形的圓心角的度數(shù)為n°,根據(jù)弧長(zhǎng)公式得到20π=,然后解方程即可.【詳解】解:設(shè)這個(gè)扇形的圓心角的度數(shù)為n°,根據(jù)題意得20π=,解得n=150,即這個(gè)扇形的圓心角為150°.故選C.【點(diǎn)睛】本題考查了弧長(zhǎng)公式:L=(n為扇形的圓心角的度數(shù),R為扇形所在圓的半徑).8、C【解析】試題分析:對(duì)于直線,令x=0,得到y(tǒng)=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面積相等),選項(xiàng)①正確;∴C(2,2),把C坐標(biāo)代入反比例解析式得:k=4,即,由函數(shù)圖象得:當(dāng)0<x<2時(shí),,選項(xiàng)②錯(cuò)誤;當(dāng)x=3時(shí),,,即EF==,選項(xiàng)③正確;當(dāng)x>0時(shí),隨x的增大而增大,隨x的增大而減小,選項(xiàng)④正確,故選C.考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.9、A【解析】

設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),由于反比例函數(shù)的圖象經(jīng)過點(diǎn)(-2,3),則k=-6,然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征分別進(jìn)行判斷.【詳解】設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),∵反比例函數(shù)的圖象經(jīng)過點(diǎn)(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴點(diǎn)(2,-3)在反比例函數(shù)y=-的圖象上.故選A.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.10、A【解析】4400000=4.4×1.故選A.點(diǎn)睛:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、12π【解析】根據(jù)圓錐的側(cè)面展開圖是扇形可得,,∴該圓錐的側(cè)面面積為:12π,故答案為12π.12、90°【解析】

連接OE,根據(jù)圓周角定理即可求出答案.【詳解】解:連接OE,

根據(jù)圓周角定理可知:

∠C=∠AOE,∠D=∠BOE,

則∠C+∠D=(∠AOE+∠BOE)=90°,

故答案為:90°.【點(diǎn)睛】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.13、【解析】分析:延長(zhǎng)AE交DF于G,再根據(jù)全等三角形的判定得出△AGD與△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根據(jù)勾股定理得出EF的長(zhǎng).詳解:延長(zhǎng)AE交DF于G,如圖,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案為.點(diǎn)睛:本題考查了正方形的性質(zhì),關(guān)鍵是根據(jù)全等三角形的判定和性質(zhì)得出EG=FG=1,再利用勾股定理計(jì)算.14、【解析】

要求AE的長(zhǎng),只要求出OA和OE的長(zhǎng)即可,要求OA的長(zhǎng)可以根據(jù)∠B=30°和OB的長(zhǎng)求得,OE可以根據(jù)∠OCE和OC的長(zhǎng)求得.【詳解】解:連接OD,如圖所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【點(diǎn)晴】切線的性質(zhì)15、-1【解析】

先求出8a+6b的值,然后整體代入進(jìn)行計(jì)算即可得解.【詳解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案為:-1.【點(diǎn)睛】本題考查了代數(shù)式求值,整體思想的利用是解題的關(guān)鍵.16、π+4【解析】根據(jù)正方形的性質(zhì),得扇形所在的圓心角是90°,扇形的半徑是2.解:根據(jù)圖形中正方形的性質(zhì),得∠AOB=90°,OA=OB=2.∴扇形OAB的弧長(zhǎng)等于π.三、解答題(共8題,共72分)17、(1)證明見解析;(2)AE=23BF,(3)AE=m【解析】

(1)根據(jù)正方形的性質(zhì),可得∠ABC與∠C的關(guān)系,AB與BC的關(guān)系,根據(jù)兩直線垂直,可得∠AMB的度數(shù),根據(jù)直角三角形銳角的關(guān)系,可得∠ABM與∠BAM的關(guān)系,根據(jù)同角的余角相等,可得∠BAM與∠CBF的關(guān)系,根據(jù)ASA,可得△ABE≌△BCF,根據(jù)全等三角形的性質(zhì),可得答案;(2)根據(jù)矩形的性質(zhì)得到∠ABC=∠C,由余角的性質(zhì)得到∠BAM=∠CBF,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)結(jié)論:AE=mn【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如圖2中,結(jié)論:AE=23理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)結(jié)論:AE=mn理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=mn【點(diǎn)睛】本題考查了四邊形綜合題、相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),矩形的性質(zhì),熟練掌握全等三角形或相似三角形的判定和性質(zhì)是解題的關(guān)鍵.18、(1)32;(2)x<﹣4或0<x<4;(3)點(diǎn)P的坐標(biāo)是P(﹣7+,14+2);或P(7+,﹣14+2).【解析】分析:(1)先將x=4代入正比例函數(shù)y=2x,可得出y=8,求得點(diǎn)A(4,8),再根據(jù)點(diǎn)A與B關(guān)于原點(diǎn)對(duì)稱,得出B點(diǎn)坐標(biāo),即可得出k的值;(2)正比例函數(shù)的值小于反比例函數(shù)的值即正比例函數(shù)的圖象在反比例函數(shù)的圖象下方,根據(jù)圖形可知在交點(diǎn)的右邊正比例函數(shù)的值小于反比例函數(shù)的值.(3)由于雙曲線是關(guān)于原點(diǎn)的中心對(duì)稱圖形,因此以A、B、P、Q為頂點(diǎn)的四邊形應(yīng)該是平行四邊形,那么△POA的面積就應(yīng)該是四邊形面積的四分之一即1.可根據(jù)雙曲線的解析式設(shè)出P點(diǎn)的坐標(biāo),然后表示出△POA的面積,由于△POA的面積為1,由此可得出關(guān)于P點(diǎn)橫坐標(biāo)的方程,即可求出P點(diǎn)的坐標(biāo).詳解:(1)∵點(diǎn)A在正比例函數(shù)y=2x上,∴把x=4代入正比例函數(shù)y=2x,解得y=8,∴點(diǎn)A(4,8),把點(diǎn)A(4,8)代入反比例函數(shù)y=,得k=32,(2)∵點(diǎn)A與B關(guān)于原點(diǎn)對(duì)稱,∴B點(diǎn)坐標(biāo)為(﹣4,﹣8),由交點(diǎn)坐標(biāo),根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍,x<﹣8或0<x<8;(3)∵反比例函數(shù)圖象是關(guān)于原點(diǎn)O的中心對(duì)稱圖形,∴OP=OQ,OA=OB,∴四邊形APBQ是平行四邊形,∴S△POA=S平行四邊形APBQ×=×224=1,設(shè)點(diǎn)P的橫坐標(biāo)為m(m>0且m≠4),得P(m,),過點(diǎn)P、A分別做x軸的垂線,垂足為E、F,∵點(diǎn)P、A在雙曲線上,∴S△POE=S△AOF=16,若0<m<4,如圖,∵S△POE+S梯形PEFA=S△POA+S△AOF,∴S梯形PEFA=S△POA=1.∴(8+)?(4﹣m)=1.∴m1=﹣7+3,m2=﹣7﹣3(舍去),∴P(﹣7+3,16+);若m>4,如圖,∵S△AOF+S梯形AFEP=S△AOP+S△POE,∴S梯形PEFA=S△POA=1.∴×(8+)?(m﹣4)=1,解得m1=7+3,m2=7﹣3(舍去),∴P(7+3,﹣16+).∴點(diǎn)P的坐標(biāo)是P(﹣7+3,16+);或P(7+3,﹣16+).點(diǎn)睛:本題考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.利用數(shù)形結(jié)合的思想,求得三角形的面積.19、40%【解析】

先設(shè)第次降價(jià)的百分率是x,則第一次降價(jià)后的價(jià)格為500(1-x)元,第二次降價(jià)后的價(jià)格為500(1-2x),根據(jù)兩次降價(jià)后的價(jià)格是240元建立方程,求出其解即可.【詳解】第一次降價(jià)的百分率為x,則第二次降價(jià)的百分率為2x,根據(jù)題意得:500(1﹣x)(1﹣2x)=240,解得x1=0.2=20%,x2=1.3=130%.則第一次降價(jià)的百分率為20%,第二次降價(jià)的百分率為40%.【點(diǎn)睛】本題考查了一元二次方程解實(shí)際問題,讀懂題意,找出題目中的等量關(guān)系,列出方程,求出符合題的解即可.20、“石鼓閣”的高AB的長(zhǎng)度為56m.【解析】

根據(jù)題意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根據(jù)反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,根據(jù)相似三角形的性質(zhì)可得=,再根據(jù)∠AHB=∠GHF,可證△ABH∽△GFH,同理得=,代入數(shù)值計(jì)算即可得出結(jié)論.【詳解】由題意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,由反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,∴=,即=①,∵∠AHB=∠GHF,∴△ABH∽△GFH,∴=,即=②,聯(lián)立①②,解得:AB=56,答:“石鼓閣”的高AB的長(zhǎng)度為56m.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì).21、(1)證明見解析;(2).【解析】

(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,從而可證明∠AED=∠ACB,進(jìn)而可證明△ADE∽△ABC;(2)△ADE∽△ABC,,又易證△EAF∽△CAG,所以,從而可求解.【詳解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考點(diǎn):相似三角形的判定22、(1);(2);(2)小貝的說法正確,理由見解析,.【解析】

(1)連接AC,BD,由OE垂直平分DC可得DH長(zhǎng),易知OH、HE長(zhǎng),相加即可;(2)補(bǔ)全⊙O,連接AO并延長(zhǎng)交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長(zhǎng),易求AP長(zhǎng);(1)小貝的說法正確,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長(zhǎng)交⊙O上端于點(diǎn)P,則此時(shí)B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設(shè)AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長(zhǎng),易知BP長(zhǎng).【詳解】解:(1)如圖1,連接AC,BD,對(duì)角線交點(diǎn)為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補(bǔ)全⊙O,連接AO并延長(zhǎng)交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論