2024屆南充市重點中學中考押題數學預測卷含解析_第1頁
2024屆南充市重點中學中考押題數學預測卷含解析_第2頁
2024屆南充市重點中學中考押題數學預測卷含解析_第3頁
2024屆南充市重點中學中考押題數學預測卷含解析_第4頁
2024屆南充市重點中學中考押題數學預測卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆南充市重點中學中考押題數學預測卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列標志中,可以看作是軸對稱圖形的是()A. B. C. D.2.如圖,取一張長為、寬為的長方形紙片,將它對折兩次后得到一張小長方形紙片,若要使小長方形與原長方形相似,則原長方形紙片的邊應滿足的條件是()A. B. C. D.3.下列各數:1.414,,﹣,0,其中是無理數的為()A.1.414 B. C.﹣ D.04.“保護水資源,節(jié)約用水”應成為每個公民的自覺行為.下表是某個小區(qū)隨機抽查到的10戶家庭的月用水情況,則下列關于這10戶家庭的月用水量說法錯誤的是()月用水量(噸)4569戶數(戶)3421A.中位數是5噸 B.眾數是5噸 C.極差是3噸 D.平均數是5.3噸5.下列各式中的變形,錯誤的是(()A.2-3x=-23x B.-b6.如圖,菱形ABCD中,∠B=60°,AB=4,以AD為直徑的⊙O交CD于點E,則的長為()A. B. C. D.7.自1993年起,聯合國將每年的3月11日定為“世界水日”,宗旨是喚起公眾的節(jié)水意識,加強水資源保護.某校在開展“節(jié)約每一滴水”的活動中,從初三年級隨機選出10名學生統(tǒng)計出各自家庭一個月的節(jié)約用水量,有關數據整理如下表.節(jié)約用水量(單位:噸)11.11.411.5家庭數46531這組數據的中位數和眾數分別是()A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.8.估計的值在()A.0到l之間 B.1到2之間 C.2到3之間 D.3到4之間9.已知⊙O及⊙O外一點P,過點P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學的作業(yè):甲:①連接OP,作OP的垂直平分線l,交OP于點A;②以點A為圓心、OA為半徑畫弧、交⊙O于點M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經過點P;②調整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點落在⊙O上,記這時直角頂點的位置為點M;③作直線PM,則直線PM即為所求(如圖2).對于兩人的作業(yè),下列說法正確的是()A.甲乙都對 B.甲乙都不對C.甲對,乙不對 D.甲不對,已對10.已知A樣本的數據如下:72,73,76,76,77,78,78,78,B樣本的數據恰好是A樣本數據每個都加2,則A,B兩個樣本的下列統(tǒng)計量對應相同的是()A.平均數 B.標準差 C.中位數 D.眾數二、填空題(共7小題,每小題3分,滿分21分)11.計算(a3)2÷(a2)3的結果等于________12.如圖,在矩形ABCD中,AD=5,AB=8,點E為射線DC上一個動點,把△ADE沿直線AE折疊,當點D的對應點F剛好落在線段AB的垂直平分線上時,則DE的長為_____.13.從“線段,等邊三角形,圓,矩形,正六邊形”這五個圖形中任取一個,取到既是軸對稱圖形又是中心對稱圖形的概率是_____.14.計算:7+(-5)=______.15.我們知道方程組的解是,現給出另一個方程組,它的解是____.16.在數軸上與所對應的點相距4個單位長度的點表示的數是______.17.如圖,一塊飛鏢游戲板由大小相等的小正方形格子構成,向游戲板隨機投擲一枚飛鏢,擊中黑色區(qū)域的概率是______.三、解答題(共7小題,滿分69分)18.(10分)如圖1,在等邊三角形中,為中線,點在線段上運動,將線段繞點順時針旋轉,使得點的對應點落在射線上,連接,設(且).(1)當時,①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數量關系,并加以證明;(2)當時,直接寫出線段,,之間的數量關系.19.(5分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數的解析式;(1)求三角形CDE的面積.20.(8分)某校為選拔一名選手參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,經研究,按圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統(tǒng)計圖不完整).下表是李明、張華在選拔賽中的得分情況:項目選手服裝普通話主題演講技巧李明85708085張華90757580結合以上信息,回答下列問題:求服裝項目的權數及普通話項目對應扇形的圓心角大??;求李明在選拔賽中四個項目所得分數的眾數和中位數;根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,并說明理由.21.(10分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點,AD⊥IC于點D.(1)試探究:D、E、F三點是否同在一條直線上?證明你的結論.(2)設AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項系數為6的一個一元二次方程.22.(10分)正方形ABCD的邊長為3,點E,F分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.(1)如圖1,若點E是DC的中點,CH與AB之間的數量關系是______;(2)如圖2,當點E在DC邊上且不是DC的中點時,(1)中的結論是否成立?若成立給出證明;若不成立,說明理由;(3)如圖3,當點E,F分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.23.(12分)某中學響應“陽光體育”活動的號召,準備從體育用品商店購買一些排球、足球和籃球,排球和足球的單價相同,同一種球的單價相同,若購買2個足球和3個籃球共需340元,購買4個排球和5個籃球共需600元.(1)求購買一個足球,一個籃球分別需要多少元?(2)該中學根據實際情況,需從體育用品商店一次性購買三種球共100個,且購買三種球的總費用不超過6000元,求這所中學最多可以購買多少個籃球?24.(14分)無錫市新區(qū)某桶裝水經營部每天的房租、人員工資等固定成本為250元,每桶水的進價是5元,規(guī)定銷售單價不得高于12元/桶,也不得低于7元/桶,調查發(fā)現日均銷售量p(桶)與銷售單價x(元)的函數圖象如圖所示.(1)求日均銷售量p(桶)與銷售單價x(元)的函數關系;(2)若該經營部希望日均獲利1350元,那么銷售單價是多少?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;

B、不是軸對稱圖形,是中心對稱圖形,不符合題意;

C、不是軸對稱圖形,是中心對稱圖形,不符合題意;

D、是軸對稱圖形,符合題意.

故選D.【點睛】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉180度后與原圖重合.2、B【解析】

由題圖可知:得對折兩次后得到的小長方形紙片的長為,寬為,然后根據相似多邊形的定義,列出比例式即可求出結論.【詳解】解:由題圖可知:得對折兩次后得到的小長方形紙片的長為,寬為,∵小長方形與原長方形相似,故選B.【點睛】此題考查的是相似三角形的性質,根據相似三角形的定義列比例式是解決此題的關鍵.3、B【解析】試題分析:根據無理數的定義可得是無理數.故答案選B.考點:無理數的定義.4、C【解析】

根據中位數、眾數、極差和平均數的概念,對選項一一分析,即可選擇正確答案.【詳解】解:A、中位數=(5+5)÷2=5(噸),正確,故選項錯誤;B、數據5噸出現4次,次數最多,所以5噸是眾數,正確,故選項錯誤;C、極差為9﹣4=5(噸),錯誤,故選項正確;D、平均數=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項錯誤.故選:C.【點睛】此題主要考查了平均數、中位數、眾數和極差的概念.要掌握這些基本概念才能熟練解題.5、D【解析】

根據分式的分子分母都乘以(或除以)同一個不為零的數(整式),分式的值不變,可得答案.【詳解】A、2-3B、分子、分母同時乘以﹣1,分式的值不發(fā)生變化,故B正確;C、分子、分母同時乘以3,分式的值不發(fā)生變化,故C正確;D、yx≠y故選:D.【點睛】本題考查了分式的基本性質,分式的分子分母都乘以(或除以)同一個不為零的數(整式),分式的值不變.6、B【解析】

連接OE,由菱形的性質得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性質和三角形內角和定理求出∠DOE=60°,再由弧長公式即可得出答案.【詳解】解:連接OE,如圖所示:∵四邊形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的長==;故選B.【點睛】本題考查弧長公式、菱形的性質、等腰三角形的性質等知識;熟練掌握菱形的性質,求出∠DOE的度數是解決問題的關鍵.7、D【解析】分析:中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數,眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個.詳解:這組數據的中位數是;這組數據的眾數是1.1.故選D.點睛:本題屬于基礎題,考查了確定一組數據的中位數和眾數的能力,要明確定義,一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數,如果數據有奇數個,則正中間的數字即為所求,如果是偶數個則找中間兩位數的平均數.8、B【解析】∵9<11<16,∴,∴故選B.9、A【解析】

(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點A,∴OA=AP.∵以點A為圓心、OA為半徑畫弧、交⊙O于點M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學的作法都正確.故選A.【點睛】本題考查了復雜的作圖,重點是運用切線的判定來說明作法的正確性.10、B【解析】試題分析:根據樣本A,B中數據之間的關系,結合眾數,平均數,中位數和標準差的定義即可得到結論:設樣本A中的數據為xi,則樣本B中的數據為yi=xi+2,則樣本數據B中的眾數和平均數以及中位數和A中的眾數,平均數,中位數相差2,只有標準差沒有發(fā)生變化.故選B.考點:統(tǒng)計量的選擇.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

根據冪的乘方,底數不變,指數相乘;同底數冪的除法,底數不變,指數相減進行計算即可.【詳解】解:原式=【點睛】本題主要考查冪的乘方和同底數冪的除法,熟記法則是解決本題的關鍵,在計算中不要與其他法則相混淆.冪的乘方,底數不變,指數相乘;同底數冪的除法,底數不變,指數相減.12、或10【解析】

試題分析:根據題意,可分為E點在DC上和E在DC的延長線上,兩種情況求解即可:如圖①,當點E在DC上時,點D的對應點F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=2,設FE=x,則FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如圖②,當,所以FQ=點E在DG的延長線上時,點D的對應點F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=8,設DE=x,則FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,綜上所述,DE=或10.13、.【解析】

試題分析:在線段、等邊三角形、圓、矩形、正六邊形這五個圖形中,既是中心對稱圖形又是軸對稱圖形的有線段、圓、矩形、正六邊形,共4個,所以取到的圖形既是中心對稱圖形又是軸對稱圖形的概率為.【點睛】本題考查概率公式,掌握圖形特點是解題關鍵,難度不大.14、2【解析】

根據有理數的加法法則計算即可.【詳解】.故答案為:2.【點睛】本題考查有理數的加法計算,熟練掌握加法法則是關鍵.15、【解析】

觀察兩個方程組的形式與聯系,可得第二個方程組中,解之即可.【詳解】解:由題意得,解得.故答案為:.【點睛】本題考查了二元一次方程組的解,用整體代入法解決這種問題比較方便.16、2或﹣1【解析】解:當該點在﹣2的右邊時,由題意可知:該點所表示的數為2,當該點在﹣2的左邊時,由題意可知:該點所表示的數為﹣1.故答案為2或﹣1.點睛:本題考查數軸,涉及有理數的加減運算、分類討論的思想.17、【解析】

求出黑色區(qū)域面積與正方形總面積之比即可得答案.【詳解】圖中有9個小正方形,其中黑色區(qū)域一共有3個小正方形,所以隨意投擲一個飛鏢,擊中黑色區(qū)域的概率是,故答案為.【點睛】本題考查了幾何概率,熟練掌握概率的計算公式是解題的關鍵.注意面積之比幾何概率.三、解答題(共7小題,滿分69分)18、(1)①;②;(2)【解析】

(1)①先根據等邊三角形的性質的,進而得出,最后用三角形的內角和定理即可得出結論;②先判斷出,得出,再判斷出是底角為30度的等腰三角形,再構造出直角三角形即可得出結論;(2)同②的方法即可得出結論.【詳解】(1)當時,①畫出的圖形如圖1所示,∵為等邊三角形,∴.∵為等邊三角形的中線∴是的垂直平分線,∵為線段上的點,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,∴;②;如圖2,延長到點,使得,連接,作于點.∵,點在上,∴.∵點在的延長線上,,∴.∴.又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,即為底角為的等腰三角形.∴.∴.(2)如圖3,當時,在上取一點使,∵為等邊三角形,∴.∵為等邊三角形的中線,∵為線段上的點,∴是的垂直平分線,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,∴.∴.【點睛】此題是幾何變換綜合題,主要考查了等邊三角形的性質,三角形的內角和定理,全等三角形的判定和性質,等腰三角形的判定和性質,銳角三角函數,作出輔助線構造出全等三角形是解本題的關鍵.19、(1);(1)11.【解析】

(1)根據正切的定義求出OA,證明△BAO∽△BEC,根據相似三角形的性質計算;(1)求出直線AB的解析式,解方程組求出點D的坐標,根據三角形CDE的面積=三角形CBE的面積+三角形BED的面積計算即可.【詳解】解:(1)∵tan∠ABO=,OB=4,∴OA=1,∵OE=1,∴BE=6,∵AO∥CE,∴△BAO∽△BEC,∴=,即=,解得,CE=3,即點C的坐標為(﹣1,3),∴反比例函數的解析式為:;(1)設直線AB的解析式為:y=kx+b,則,解得,,則直線AB的解析式為:,,解得,,,∴當D的坐標為(6,1),∴三角形CDE的面積=三角形CBE的面積+三角形BED的面積=×6×3+×6×1=11.【點睛】此題考查的是反比例函數與一次函數的交點問題,掌握待定系數法求函數解析式的一般步驟、求反比例函數與一次函數的交點的方法是解題的關鍵.20、(1)服裝項目的權數是10%,普通話項目對應扇形的圓心角是72°;(2)眾數是85,中位數是82.5;(3)選擇李明參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,理由見解析.【解析】

(1)根據扇形圖用1減去其它項目的權重可求得服裝項目的權重,用360度乘以普通話項目的權重即可求得普通話項目對應扇形的圓心角大小;(2)根據統(tǒng)計表中的數據可以求得李明在選拔賽中四個項目所得分數的眾數和中位數;(3)根據統(tǒng)計圖和統(tǒng)計表中的數據可以分別計算出李明和張華的成績,然后比較大小,即可解答本題.【詳解】(1)服裝項目的權數是:1﹣20%﹣30%﹣40%=10%,普通話項目對應扇形的圓心角是:360°×20%=72°;(2)明在選拔賽中四個項目所得分數的眾數是85,中位數是:(80+85)÷2=82.5;(3)李明得分為:85×10%+70×20%+80×30%+85×40%=80.5,張華得分為:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演講成績好,故選擇李明參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽.【點睛】本題考查了扇形統(tǒng)計圖、中位數、眾數、加權平均數,明確題意,結合統(tǒng)計表和統(tǒng)計圖找出所求問題需要的條件,運用數形結合的思想進行解答是解題的關鍵.21、(1)D、E、F三點是同在一條直線上.(2)6x2﹣13x+6=1.【解析】(1)利用切線長定理及梅氏定理即可求證;(2)利用相似和韋達定理即可求解.解:(1)結論:D、E、F三點是同在一條直線上.證明:分別延長AD、BC交于點K,由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,再由切線長定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅勞斯定理的逆定理可證,D、E、F三點共線,即D、E、F三點共線.(2)∵AB=AC=5,BC=6,∴A、E、I三點共線,CE=BE=3,AE=4,連接IF,則△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四點共圓.設⊙I的半徑為r,則:,∴,即,,∴由△AEF∽△DEI得:,∴.∴,因此,由韋達定理可知:分別以、為兩根且二次項系數為6的一個一元二次方程是6x2﹣13x+6=1.點睛:本是一道關于圓的綜合題.正確分析圖形并應用圖形的性質是解題的關鍵.22、(1)CH=AB.;(2)成立,證明見解析;(3)【解析】

(1)首先根據全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據AB=BC,判斷出CH=AB即可.(2)首先根據全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據AB=BC,判斷出CH=AB即可.(3)首先根據三角形三邊的關系,可得CK<AC+AK,據此判斷出當C、A、K三點共線時,CK的長最大;然后根據全等三角形判定的方法,判斷出△DFK≌△DEH,即可判斷出DK=DH,再根據全等三角形判定的方法,判斷出△DAK≌△DCH,即可判斷出AK=CH=AB;最后根據CK=AC+AK=AC+AB,求出線段CK長的最大值是多少即可.【詳解】解:(1)如圖1,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵點E是DC的中點,DE=EC,∴點F是AD的中點,∴AF=FD,∴EC=AF,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H兩點都在以BE為直徑的圓上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(2)當點E在DC邊上且不是DC的中點時,(1)中的結論CH=AB仍然成立.如圖2,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H兩點都在以BE為直徑的圓上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如圖3,,∵CK≤AC+AK,∴當C、A、K三點共線時,CK的長最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論