版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
AI
Governance
AllianceBrie?ng
Paper
SeriesJA
N
U
A
RY
20
2
4January2024AIGovernanceAllianceBrie?ngPaperSeriesForewordPaulDaughertyJeremyJurgensManagingDirector,WorldEconomicForumChiefTechnologyandInnovationOf?cer(CTIO),AccentureCathyLiJohnGrangerSeniorVice-President,IBMConsultingHead,AI,DataandMetaverse;MemberoftheExecutiveCommittee,WorldEconomicForumOurworldisexperiencingaphaseofmulti-facetedtransformationinwhichtechnologicalinnovationplaysaleadingrole.Sinceitsinceptioninthelatterhalfofthe20thcentury,arti?cialintelligence(AI)hasjourneyedthroughsigni?cantmilestones,culminatingintherecentbreakthroughofgenerativeAI.GenerativeAIpossessesaremarkablerangeofabilitiestocreate,analyseandinnovate,signallingaparadigmshiftthatisreshapingindustriesfromhealthcaretoentertainment,andbeyond.ResponsibleApplicationsandTransformation,andResilientGovernance
andRegulation.Thesepillarsunderscore
acomprehensiveend-to-endapproachtoaddresskeyAIgovernancechallengesandopportunities.Theallianceisaglobaleffortthatunitesdiverseperspectivesandstakeholders,whichallowsforthoughtfuldebates,ideationandimplementationstrategiesformeaningfullong-termsolutions.Thealliancealsoadvanceskeyperspectivesonaccessandinclusion,drivingeffortstoenhanceaccesstocriticalresourcessuchaslearning,skills,data,modelsandcompute.Thisworkincludesconsideringhowsuchresourcescanbeequitablydistributed,especiallytounderservedregionsandcommunities.Mostcritically,itisvitalthatstakeholderswhoaretypicallynotengagedinAIgovernancedialoguesaregivenaseatatthetable,ensuringthatallvoicesareincluded.Indoingso,theAIGovernanceAllianceprovidesaforumforall.AsnewcapabilitiesofAIadvanceanddrivefurtherinnovation,itisalsorevolutionizingeconomiesandsocietiesaroundtheworldatanexponentialpace.WiththeeconomicpromiseandopportunitythatAIbrings,comesgreatsocialresponsibility.Leadersacrosscountriesandsectorsmustcollaboratetoensureitisethicallyandresponsiblydeveloped,deployedandadopted.The
World
Economic
Forum’s
AI
Governance
Alliance(AIGA)standsasapioneeringcollaborativeeffort,unitingindustryleaders,governments,academicinstitutions
and
civil
society
organizations.
The
alliancerepresentsasharedcommitmenttoresponsibleAIdevelopmentandinnovationwhileupholdingethicalconsiderationsateverystageoftheAIvaluechain,fromdevelopmenttoapplicationandgovernance.Thealliance,ledbytheWorldEconomicForumincollaborationwithIBMConsultingandAccentureasknowledgepartners,ismadeupofthreecoreworkstreams–SafeSystemsandTechnologies,Aswenavigatethedynamicandever-evolvinglandscapeofAIgovernance,theinsightsfromtheAIGovernanceAllianceareaimedatprovidingvaluableguidancefortheresponsibledevelopment,adoptionandoverallgovernance
ofgenerativeAI.Weencourage
decision-makers,
industry
leaders,
policy-makersandthinkersfrom
around
theworldtoactivelyparticipateinourcollectiveeffortstoshapeanAI-drivenfuturethatupholdssharedhumanvaluesandpromotesinclusivesocietalprogressforeveryone.AIGovernanceAlliance2Introduction
tothebrie?ngpaperseriesTheAIGovernanceAlliancewaslaunchedinJune2023withtheobjectiveofprovidingguidanceontheresponsibledesign,developmentanddeploymentofarti?cialintelligencesystems.Sinceitsinception,morethan250membershavejoinedthealliancefromover200organizationsacrosssixcontinents.Theallianceiscomprisedofasteeringcommitteealongwiththreeworkinggroups.businesstransformationforresponsiblegenerativeAIadoptionacrossindustriesandsectors.ThisincludesassessinggenerativeAIusecasesenablingneworincrementalvaluecreation,andunderstandingtheirimpactonvaluechainsandbusinessmodelswhileevaluatingconsiderationsforadoptionandtheirdownstreameffects.TheResilientGovernanceandRegulationworkinggroup,ledincollaborationwithAccenture,isfocusedontheanalysisoftheAIgovernancelandscape,mechanismstofacilitateinternationalcooperationtopromoteregulatoryinteroperability,aswellasthepromotionofequity,inclusionandglobalaccesstoAI.TheSteeringCommitteecomprisesleadersfromthepublicandprivatesectorsalongwithacademiaandprovidesguidanceontheoveralldirectionoftheallianceanditsworkinggroups.TheSafeSystemsandTechnologiesworkinggroup,ledincollaborationwithIBMConsulting,isfocusedonestablishingconsensusonthenecessarysafeguardstobeimplementedduringthedevelopmentphase,examiningtechnicaldimensionsoffoundationmodels,includingguardrailsandresponsiblereleaseofmodelsandapplications.Accountabilityisde?nedateachstageoftheAIlifecycletoensureoversightandthoughtfulexpansion.Thisbrie?ngpaperseriesisthe?rstoutputfromeachofthethreeworkinggroupsandestablishesthefoundationalfocusareasoftheAIGovernanceAlliance.Inatimeofrapidchange,theAIGovernanceAllianceseekstobuildamultistakeholdercommunityoftrustedvoicesfromacrossthepublic,private,civilsocietyandacademicspheres,united,totacklesomeofthemostchallengingandpotentiallymostrewardingissuesincontemporaryAIgovernance.TheResponsibleApplicationsandTransformationworkinggroup,ledincollaborationwithIBMConsulting,isfocusedonevaluatingAIGovernanceAlliance3ReadingguideThis
paper
series
is
composed
of
three
brie?ng
papersthathavebeengroupedintothematiccategoriesaccordingto
the
threeworkinggroupsof
the
alliance.policies,principlesandpracticesthatgoverntheethicaldevelopment,deployment,useandregulationofAItechnologies,theResilientGovernanceandRegulationbrie?ngpaperoffersguidance.Eachbrie?ngpaperofthereportcanalsobereadasastand-alonepiece.Forexample,developers,adoptersandpolicy-makerswhoare
moreinterestedinthetechnicaldimensionscaneasilyjumptotheSafeSystemsandTechnologiesbrie?ngpapertoobtainacontemporaryunderstandingoftheAIlandscape.
For
decision-makers
engaged
in
corporatestrategyandbusinessimplicationsofgenerativeAI,theResponsibleApplicationsandTransformationbrie?ngpaperoffersspeci?ccontext.Forbusinessleadersandpolicy-makersoccupiedwiththelaws,Whileeachbrie?ngpaperhasauniquefocusarea,manyimportantlessonsarelearnedattheintersectionofthesevaryingmultistakeholdercommunities,alongwiththeconsensusandknowledgethatemanatefromeachworkinggroup.Therefore,manyofthetakeawaysfromthisbrie?ngpaperseriesshouldbeviewedattheintersectionofeachworkinggroup,where?ndingsbecomeadditiveandareenhancedincontextandinterrelationwithoneanother.AI
Governance
AllianceBrie?ng
PaperSeriesJA
N
U
A
R
Y
2
0
24Theme1SafeSystemsandTechnologiesTheme2ResponsibleApplicationsTheme3ResilientGovernanceandRegulationandTransformation1/3
AIGovernanceAlliance2/3
AIGovernanceAlliance3/3
AIGovernanceAllianceBrie?ngPaperSeries2024Brie?ngPaperSeries2024Brie?ngPaperSeries2024PresidioAIFramework:Towards
Safe
GenerativeAIModelsUnlocking
ValueGenerative
AIGovernance:from
Generative
AI:Guidance
for
ResponsibleTransformationShapingaCollectiveGlobalFutureIN
C
O
L
LA
B
O
RAT
IO
NW
IT
H
A
C
C
E
N
TU
R
EIN
C
O
L
LA
B
O
RAT
IO
NW
IT
H
IB
M
C
O
N
S
U
LT
IN
GIN
C
O
L
LA
B
O
RAT
IO
NW
IT
H
IB
M
C
O
N
S
U
LT
IN
GAIGovernanceAlliance4AIGovernance
AllianceSteeringCommitteeNickCleggAndrewNgPresident,GlobalAffairs,MetaFounder,
DeepLearning.AIGaryCohnSabastianNilesVice-Chairman,IBMPresidentandChiefLegalOf?cer,
SalesforceSadieCreeseOmarSultanAlOlamaProfessorofCybersecurity,UniversityofOxfordMinisterofStateforArti?cialIntelligence,UnitedArabEmiratesOritGadieshChairman,Bain&CompanyLynne
ParkerAssociateVice-ChancellorandDirector,AITennessee
Initiative,UniversityofTennesseePaulaIngabireMinisterofInformationCommunicationTechnology
ofRwandaBradSmithVice-ChairandPresident,MicrosoftDaphneKollerFounderandChiefExecutiveOf?cer,
InsitroMustafaSuleymanCo-FounderandChiefExecutiveOf?cer,In?ectionAIXueLanProfessor;Dean,SchwarzmanCollege,Tsinghua
UniversityJosephineTeoMinisterforCommunicationsandInformationMinistryofCommunicationsandInformation(MCI)ofSingaporeAnnaMakanjuVice-President,GlobalAffairs,OpenAIDurgaMalladiKentWalkerSeniorVice-President,QualcommPresident,GlobalAffairs,GoogleAIGovernanceAlliance5GlossaryTerminology
inAIisafast-movingtopic,andthesametermcanhavemultiplemeanings.Theglossarybelowshouldbeviewedasasnapshotofcontemporaryde?nitions.Mis/disinformation:Misinformationinvolvesthedisseminationofincorrectfacts,whereindividualsmayunknowinglyshareorbelievefalseinformationwithouttheintenttomislead.DisinformationinvolvesthedeliberateandintentionalspreadofArti?cialintelligencesystem:amachine-basedsystemthat,forexplicitorimplicitobjectives,infers,fromtheinputitreceives,howtogenerateoutputssuchaspredictions,content,recommendationsordecisionsthatcanin?uencephysicalorvirtualenvironments.DifferentAIsystemsvaryintheirlevelsofautonomyandfalseinformationwiththeaimofmisleadingothers.4Modeldriftmonitoring:Theactofregularlycomparingmodelmetricstomaintainperformancedespitechangingdata,adversarialinputs,noiseandexternalfactors.adaptivenessafterdeployment.1Modelhyperparameters:Adjustableparametersofamodelthatmustbetunedtoobtainoptimalperformance(asopposedto?xedparametersofamodel,de?nedbasedonitstrainingset).CausalAI:AImodelsthatidentifyandanalysecausalrelationshipsindata,enablingpredictionsanddecisionsbasedontheserelationships.CausalinferencemodelsprovideresponsibleAIbene?ts,includingexplainabilityandbiasreductionthroughformalizationsoffairness,aswellascontextualisationformodelreasoningandoutputs.TheintersectionandexplorationofcausalandgenerativeAImodelsisanewconversation.Multi-modalAI:AItechnologycapableofprocessingandinterpretingmultipletypesofdata(liketext,images,audio,video),potentiallysimultaneously.Itintegratestechniquesfromvariousdomains(naturallanguageprocessing,computervision,audioprocessing)formorecomprehensiveanalysisandinsights.Fine-tuning:Theprocessofadaptingapre-trainedmodeltoperformaspeci?ctaskbyconductingadditionaltrainingwhileupdatingthemodel’sexistingparameters.Promptengineering:Theprocessofdesigningnaturallanguagepromptsforalanguagemodeltoperformaspeci?ctask.Foundationmodel:AfoundationmodelisanAImodelthatcanbeadaptedtoawiderangeofdownstreamtasks.Foundationmodelsaretypicallylarge-scale(e.g.billionsofparameters)generativemodelstrainedonavastarrayofdata,encompassingbothlabelledandunlabelleddatasets.Retrievalaugmentedgeneration:Atechniqueinwhichalargelanguagemodelisaugmentedwithknowledgefromexternalsourcestogeneratetext.Intheretrievalstep,relevantdocumentsfromanexternalsourceareidenti?edfromtheuser’s
query.Inthegenerationstep,portionsofthosedocumentsareincludedinthemodelprompttogeneratearesponsegroundedintheretrieveddocuments.Frontiermodel:Thistermgenerallyreferstothemostadvancedorcutting-edgemodelsinAItechnology.Frontiermodelsrepresentthelatestdevelopmentsandareoftencharacterizedbyincreasedcomplexity,enhancedcapabilitiesandimprovedperformanceoverpreviousmodels.Parameter-ef?cient?ne-tuning:Anef?cient,low-costwayofadaptingapre-trainedmodeltonewtaskswithoutretrainingthemodelorupdatingitsweights.Itinvolveslearningasmallnumberofnewparametersthatareappendedtoamodel’s
promptwhilefreezingthemodel’s
existingparameters(alsoknownasprompt-tuning).GenerativeAI:AImodelsspeci?callyintendedtoproducenewdigitalmaterialasanoutput(e.g.text,images,audio,videoandsoftwarecode),includingwhensuchAImodelsareusedinapplicationsandtheiruserinterfaces.ThesearetypicallyconstructedasmachinelearningsystemsthathavebeentrainedAIredteaming:
A
methodofsimulatingattacksbyagroupofpeopleauthorizedandorganizedtoidentifypotentialweaknesses,vulnerabilitiesandareasforimprovement.It
should
be
integral
frommodel
designtodevelopmenttodeploymentandapplication.Theredteam’s
objectiveistoimprovesecurityandrobustnessbydemonstratingtheimpactsofsuccessful
attacks
and
by
demonstrating
what
worksforthedefendersinanoperationalenvironment.onmassiveamountsofdata.2Hallucination:Hallucinationsoccurwhenmodelsproducefactuallyinaccurateoruntruthfulinformation.Often,hallucinatoryoutputispresentedinaplausibleorconvincingmanner,
makingdetectionbyendusersdif?cult.Reinforcementlearningfromhumanfeedback(RLHF):Anapproachformodelimprovementwherehumanevaluatorsrankmodel-generatedoutputsforsafety,relevanceandcoherence,andthemodelisupdatedbasedonthisfeedbacktobroadlyimproveperformance.Jurisdictionalinteroperability:Theabilitytooperatewithinandacrossdifferentjurisdictionsgovernedbydifferingpolicyandregulatoryrequirements.3AIGovernanceAlliance6Releaseaccess–Agradientcoveringdifferentlevelsofaccessgranted.evaluationtoensure
thatvaluecanberealized
andchangemanagementissuccessfullyalignedwithde?nedgoalsinaresponsibleframework.5–Fullyclosed:Thefoundationmodelanditscomponents(likeweights,dataanddocumentation)arenotreleasedoutsidethecreatorgrouporsub-sectionoftheorganization.Thesameorganizationusuallydoesmodelcreationanddownstreammodeladaptation.Externalusersmayinteractwiththemodelthroughanapplication.ResponsibleAI:AIthatisdevelopedanddeployedinwaysthatmaximizebene?tsandminimizetherisksitposestopeople,societyandtheenvironment.Itisoftendescribedbyvariousprinciplesandorganizations,includingbutnotlimitedtorobustness,transparency,explainability,fairnessandequity.6––Hosted:Creatorsprovideaccesstothefoundationmodelbyhostingitontheirinfrastructure,allowinginternalandexternalinteractionviaauserinterface,andreleasingspeci?cmodeldetails.Responsibletransformation:Theorganizationaleffortandorientationtoharnesstheopportunitiesandbene?tsofgenerativeAIwhilemitigatingtheriskstoindividuals,organizationsandsociety.Responsibletransformationisstrategiccoordinationandchangeacrossanorganization’sgovernance,operations,talentandcommunications.Applicationprogramminginterface(API):CreatorsprovideaccesstothefoundationmodelbyhostingitontheirinfrastructureandallowingadapterinteractionviaanAPItoperformprescribedtasksandreleasespeci?cmodeldetails.Traceability:Determiningtheoriginalsourceandfactsofthegeneratedoutput.Transparency:Thedisclosureofdetails(decisions,choicesandprocesses)inthedocumentationaboutthesources,dataandmodeltoenableinformeddecisionsregardingmodelselectionandunderstanding.––Downloadable:Creatorsprovideawaytodownloadthefoundationmodelforrunningontheadapters’infrastructurewhilewithholdingsomeofitscomponents,liketrainingdata.Usagerestriction:Theprocessofrestrictingtheusageofthemodelbeyondtheintendedusecases/purposetoavoidunintendedconsequencesofthemodel.Fullyopen:Creatorsreleaseallmodelcomponents,includingallparameters,weights,modelarchitecture,trainingcode,dataanddocumentation.Watermarking:Theactofembeddinginformationinto
outputs
created
by
AI
(e.g.
images,
videos,
audio,text)forthepurposesofverifyingtheauthenticityoftheoutput,identityand/orcharacteristicsofitsResponsibleadoption:TheadoptionofindividualusecasesandopportunitieswithintheresponsibleAIframeworkofanorganization.Itrequires
thoroughprovenance,modi?cationsand/orconveyance.7Endnotes1.2.3.4.5.6.7.“OECDAIPrinciplesoverview”,OrganisationforEconomicCo-operationandDevelopment(OECD)AIPolicyObservatory,2023,https://oecd.ai/en/ai-principles.OECD,G7HiroshimaProcessonGenerativeArti?cialIntelligence(AI)Towardsa
G7CommonUnderstandingonGenerativeAI,2023,/publications/g7-hiroshima-process-on-generative-arti?cial-intelligence-ai-bf3c0c60-en.htm.WorldEconomicForum,InteroperabilityIntheMetaverse,2023,/publications/interoperability-in-the-metaverse/.WorldEconomicForum,ToolkitforDigitalSafetyDesignInterventions
andInnovations:TypologyofOnlineHarms,2023,/publications/toolkit-for-digital-safety-design-interventions-and-innovations-typology-of-online-harms/.Solaiman,Irene,“TheGradientofGenerativeAIRelease:MethodsandConsiderations”,HuggingFace,2023,/abs/2302.04844.WorldEconomicForum,ThePresidioRecommendationsonResponsibleGenerativeAI,2023,/publications/the-presidio-recommendations-on-responsible-generative-ai/.TheWhiteHouse,ExecutiveOrderontheSafe,Secure,
andTrustworthy
DevelopmentandUseofArti?cialIntelligence,2023:/brie?ng-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-arti?cial-intelligence/.AIGovernanceAlliance71/3AIGovernanceAllianceBrie?ngPaperSeries
2024Presidio
AI
Framework:Towards
Safe
GenerativeAI
ModelsI
N
C
O
L
L
A
B
O
R
A
T
I
O
NW
I
T
H
I
B
M
C
O
N
S
U
L
T
I
N
GCoverimage:MidJourneyContentsExecutivesummary101112131515161617181922Introduction1IntroducingthePresidioAIFramework2ExpandedAIlifecycle3GuardrailsacrosstheexpandedAIlifecycle3.1Foundationmodelbuildingphase3.2Foundationmodelreleasephase3.3Modeladaptationphase4ShiftingleftforoptimizedriskmitigationConclusionContributorsEndnotesDisclaimerThisdocumentispublishedbytheWorldEconomicForumasacontributiontoaproject,insightareaorinteraction.The?ndings,interpretationsandconclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedandendorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarilyrepresenttheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,Partnersorotherstakeholders.?2024WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformationstorageandretrievalsystem.1/3:PresidioAIFramework9Executive
summaryThePresidioAIFrameworkaddressesgenerativeAIrisksbypromotingsafety,ethics,andinnovationwithearlyguardrails.TheriseofgenerativeAIpresentssigni?cant1.
ExpandedAIlifecycle:Thiselementoftheframeworkestablishesacomprehensiveend-to-endviewofthegenerativeAIlifecycle,signifyingvaryingactorsandlevelsofresponsibilityateachstage.opportunitiesforpositivesocietaltransformations.Atthesametime,generativeAImodelsaddnewdimensionstoAIriskmanagement,encompassingvariousriskssuchashallucinations,misuse,lackoftraceabilityandharmfuloutput.Therefore,itisessentialtobalancesafety,ethicsandinnovation.2.
Expandedriskguardrails:TheframeworkdetailsrobustguardrailstobeconsideredatdifferentstepsofthegenerativeAIlifecycle,emphasizingpreventionratherthanmitigation.Thisbrie?ngpaperidenti?esalistofchallengestoachievingthisbalanceinpractice,suchaslackofacohesiveviewofthegenerativeAImodellifecycleandambiguityintermsofthedeploymentandperceivedeffectivenessofvaryingsafetyguardrailsthroughoutthelifecycle.Amidthesechallenges,therearesigni?cantopportunities,includinggreaterstandardizationthroughsharedterminologyandbestpractices,facilitatingacommonunderstandingoftheeffectivenessofvariousriskmitigationstrategies.3.
Shift-leftmethodology:Thismethodologyproposestheimplementationofguardrailsattheearliest
stage
possible
in
the
generative
AI
life
cycle.Whileshift-leftisawell-establishedconceptinsoftwareengineering,
its
application
in
the
contextofgenerativeAIpresentsauniqueopportunitytopromotemorewidespreadadoption.Inconclusion,thepaperemphasizestheneedforgreatermultistakeholdercollaborationbetweenindustrystakeholders,policy-makersandThisbrie?ngpaperpresentsthePresidioAIFramework,whichprovidesastructuredapproachtothesafedevelopment,deploymentanduseofgenerativeAI.Indoingso,theframeworkhighlightsgapsandopportunitiesinaddressingsafetyconcerns,viewedfromtheperspectiveoffourprimaryactors:AImodelcreators,AImodeladapters,AImodelusers,andAIapplicationusers.Sharedresponsibility,earlyriskidenti?cationandproactiveriskmanagementthroughtheimplementationofappropriateguardrailsareemphasizedthroughout.organizations.ThePresidioAIFrameworkpromotessharedresponsibility,earlyriskidenti?cationandproactiveriskmanagementingenerativeAIdevelopment,usingguardrailstoensureethicalandresponsibledeployment.Thepaperlaysthefoundationforongoingsafety-relatedworkoftheAIGovernanceAllianceandtheSafeSystemsandTechnologiesworkinggroup.Futureworkwillexpandonthecoreconceptsandcomponentsintroducedinthispaper,
includingtheprovisionofamoreexhaustivelistofknownandnovelThePresidioAIFrameworkconsistsofthreecorecomponents:guardrails,alongwithachecklisttooperationalizetheframeworkacrossthegenerativeAIlifecycle.1/3:PresidioAIFramework
10IntroductionThecurrentAIlandscapeincludesbothchallengesandopportunitiesforprogresstowardssafegenerativeAImodels.Thisbrie?ngpaperoutlinesthePresidioAIdiversity.However,
theavailabilityofallthemodelcomponents(e.g.weights,technicaldocumentationandcode)couldalsoamplifyrisksandreduceguardrails’effectiveness.ThereisaneedforcarefulanalysisofrisksandcommonconsensusamongtheuseofguardrailsFramework,providingastructuredapproachtoaddressingbothtechnicalandproceduralconsiderationsforsafegenerativearti?cialintelligence(AI)models.Theframeworkcentresonfoundationmodelsandincorporatesrisk-mitigationstrategiesthroughouttheentirelifecycle,encompassingcreation,adaptationandeventualretirement.InformedbythoroughresearchintothecurrentAIlandscapeandinputfromamultistakeholdercommunityandpractitioners,theframeworkunderscorestheimportanceofestablishedsafetyguidelinesandrecommendationsviewedthroughatechnicallens.NotablechallengesintheexistinglandscapeimpactingthedevelopmentanddeploymentofsafegenerativeAIinclude:considering
the
gradient
of
release;
that
is,
varying2levelsatwhichAImodelsareaccessibleoncereleased,fromfullyclosedtofullyopen-sourced.Simultaneously,therearesomeidenti?edopportunitiesforprogresstowardssafety,suchas:–Standardization:Bylinkingthetechnicalaspectsateachphaseofdesign,developmentandreleasewiththeircorrespondingrisksandmitigations,thereistheopportunityforbringingattentiontosharedterminologyandbestpractices.Thismaycontributetowardsgreateradoptionofnecessarysafetymeasuresandpromotecommunityharmonizationacrossdifferentstandardsandguidelines.–Fragmentation:Aholisticperspective,whichcoverstheentirelifecycleofgenerativeAImodelsfromtheirinitialdesigntodeploymentandthecontinuousstagesofadaptationanduse,iscurrentlymissing.Thiscanleadtofragmentedperceptionsofthemodel’s
creationandtherisksassociatedwithitsdeployment.–Stakeholdertrustandempowerment:Pursuingclarityandagreementontheexpectedriskmitigationstrategies,wherethesearemosteffectivelylocatedinthemodellifecycleandwhoisaccountableforimplementationpavesthewayforstakeholderstoimplementtheseproactively.Thisimprovessafety,preventsadverseoutcomesforindividualsandsociety,andbuildstrustamongallstakeholders.––Vague
de?nitions:Ambiguityandlackofcommonunderstandingofthemeaningofsafety,risks
(e.g.traceability),andgeneral1safetymeasures(e.g.redteaming)atthefrontierofmodeldevelopment.Guardrailambiguity:Whilethereisagreementontheimportanceofrisk-mitigationstrategies–knownasguardrails–clarityislackingregardingaccountability,effectiveness,actionability,applicability,limitationsandatwhatstagesoftheAIdesign,developmentandreleaselifecyclevaryingguardrailsshouldbeimplemented.Whilethisbrie?ngpaperdetailsthegenerativeAImodellifecyclealongwithsomeguardrails,itisbynomeansexhaustive.Sometopicsoutsidethispaper’s
scopeincludeadiscussionofcurrentorfuturegovernmentregulationsofAIrisksandmitigations(thisiscoveredintheResilientGovernanceworkinggroupbrie?ngpaper)orconsiderationofdownstreamimplementationanduseofspeci?cAIapplications.–Modelaccess:Anopenapproachpresentssigni?cantopportunitiesforinnovation,greateradoptionandincreasedstakeholderpopulation1/3:PresidioAIFramework
11Introducing
the1Presidio
AIFrameworkAstructuredapproachthatemphasizessharedresponsibilityandproactiveriskmitigationbyimplementingappropriateguardrailsearlyinthegenerativeAIlifecycle.Thosereleasing,adaptingorusingfoundationmodelsoftenfacechallengesinin?uencingtheoriginalmodeldesignorsettingupthenecessaryinfrastructureforbuildingfoundationmodels.Thecombi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商業(yè)計劃書須避免的雷區(qū)
- 社區(qū)食品藥品工作計劃范文
- 小學(xué)國培個人研修計劃
- 小學(xué)四年級上冊音樂教學(xué)計劃例文
- 人教版九年級數(shù)學(xué)下冊教學(xué)計劃
- 2025年手術(shù)室護理工作計劃范文模板
- 2025年小學(xué)一年級班務(wù)秋季工作計劃
- 《ERP系統(tǒng)功能介紹》課件
- 《塑料薄膜印刷》課件
- 《蝙蝠和雷達自制》課件
- 2024年大型風(fēng)力發(fā)電項目EPC總承包合同
- 植物學(xué)#-形考作業(yè)4-國開(ZJ)-參考資料
- 2024新人教版英語七年級上單詞默寫單(小學(xué)部分)
- 2021-2022學(xué)年第二學(xué)期《大學(xué)生職業(yè)發(fā)展與就業(yè)指導(dǎo)2》學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 借款協(xié)議(父母借款給子女買房協(xié)議)(二篇)
- SOAP病例書寫規(guī)范
- 2024年黑龍江大慶林甸縣退役軍人服務(wù)中心選調(diào)歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 外研版英語2024七年級上冊全冊單元知識清單(記憶版)
- 期末檢測試卷(試題)-2024-2025學(xué)年四年級上冊數(shù)學(xué)青島版
- 保潔服務(wù)報價方案
- 問題解決策略歸納課件北師大版七年級數(shù)學(xué)上冊
評論
0/150
提交評論