系統(tǒng)方框圖及系統(tǒng)傳遞函數(shù)_第1頁
系統(tǒng)方框圖及系統(tǒng)傳遞函數(shù)_第2頁
系統(tǒng)方框圖及系統(tǒng)傳遞函數(shù)_第3頁
系統(tǒng)方框圖及系統(tǒng)傳遞函數(shù)_第4頁
系統(tǒng)方框圖及系統(tǒng)傳遞函數(shù)_第5頁
已閱讀5頁,還剩115頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

關于系統(tǒng)方框圖及系統(tǒng)傳遞函數(shù)

一、建立動態(tài)結構圖的一般方法例2-3.列寫如圖所示RC網(wǎng)絡的微分方程。RCuruci第2頁,共120頁,2024年2月25日,星期天解:由基爾霍夫定律得:推導第3頁,共120頁,2024年2月25日,星期天例2-6:P24第4頁,共120頁,2024年2月25日,星期天將上圖匯總得到:

第5頁,共120頁,2024年2月25日,星期天

動態(tài)結構圖的概念系統(tǒng)的動態(tài)結構圖由若干基本符號構成。構成動態(tài)結構圖的基本符號有四種,即信號線、傳遞方框、綜合點和引出點。信號線

表示信號輸入、輸出的通道。箭頭代表信號傳遞的方向。第6頁,共120頁,2024年2月25日,星期天2.傳遞方框G(s)方框的兩側為輸入信號線和輸出信號線,方框內(nèi)寫入該輸入、輸出之間的傳遞函數(shù)G(s)。第7頁,共120頁,2024年2月25日,星期天3.綜合點綜合點亦稱加減點,表示幾個信號相加、減,叉圈符號的輸出量即為諸信號的代數(shù)和,負信號需在信號線的箭頭附近標以負號。+省略時也表示+第8頁,共120頁,2024年2月25日,星期天4.引出點表示同一信號傳輸?shù)綆讉€地方。第9頁,共120頁,2024年2月25日,星期天二、動態(tài)結構圖的基本連接形式1.串聯(lián)連接G1(s)G2(s)X(s)Y(s)方框與方框通過信號線相連,前一個方框的輸出作為后一個方框的輸入,這種形式的連接稱為串聯(lián)連接。第10頁,共120頁,2024年2月25日,星期天2.并聯(lián)連接G1(s)G2(s)X(s)-+Y(s)兩個或兩個以上的方框,具有同一個輸入信號,并以各方框輸出信號的代數(shù)和作為輸出信號,這種形式的連接稱為并聯(lián)連接。第11頁,共120頁,2024年2月25日,星期天3.反饋連接一個方框的輸出信號輸入到另一個方框后,得到的輸出再返回到這個方框的輸入端,構成輸入信號的一部分。這種連接形式稱為反饋連接。G(s)R(s)-C(s)H(s)第12頁,共120頁,2024年2月25日,星期天四結構圖的等效變換思路:

在保證總體動態(tài)關系不變的條件下,設法將原結構逐步地進行歸并和簡化,最終變換為輸入量對輸出量的一個方框。第13頁,共120頁,2024年2月25日,星期天1.串聯(lián)結構的等效變換(1)串聯(lián)結構圖G1(s)G2(s)R(s)C(s)U(s)第14頁,共120頁,2024年2月25日,星期天等效變換證明推導G1(s)G2(s)R(s)C(s)U(s)1.串聯(lián)結構的等效變換(2)第15頁,共120頁,2024年2月25日,星期天等效變換證明推導G1(s)G2(s)R(s)C(s)U(s)1.串聯(lián)結構的等效變換(3)第16頁,共120頁,2024年2月25日,星期天串聯(lián)結構的等效變換圖G1(s)G2(s)R(s)C(s)U(s)G1(s)?G2(s)R(s)C(s)兩個串聯(lián)的方框可以合并為一個方框,合并后方框的傳遞函數(shù)等于兩個方框傳遞函數(shù)的乘積。1.串聯(lián)結構的等效變換(4)第17頁,共120頁,2024年2月25日,星期天2.并聯(lián)結構的等效變換并聯(lián)結構圖C1(s)G1(s)G2(s)R(s)

C(s)C2(s)第18頁,共120頁,2024年2月25日,星期天等效變換證明推導(1)G1(s)G2(s)R(s)

C(s)C1(s)C2(s)第19頁,共120頁,2024年2月25日,星期天2.并聯(lián)結構的等效變換等效變換證明推導C1(s)G1(s)G2(s)R(s)

C(s)C2(s)第20頁,共120頁,2024年2月25日,星期天

并聯(lián)結構的等效變換圖G1(s)G2(s)R(s)

C(s)C1(s)C2(s)G1(s)

G2(s)R(s)C(s)兩個并聯(lián)的方框可以合并為一個方框,合并后方框的傳遞函數(shù)等于兩個方框傳遞函數(shù)的代數(shù)和。第21頁,共120頁,2024年2月25日,星期天3.反饋結構的等效變換反饋結構圖G(s)R(s)

C(s)H(s)B(s)E(s)C(s)=?第22頁,共120頁,2024年2月25日,星期天3.反饋結構的等效變換等效變換證明推導G(s)R(s)

C(s)H(s)B(s)E(s)第23頁,共120頁,2024年2月25日,星期天3.反饋結構的等效變換反饋結構的等效變換圖G(s)R(s)

C(s)H(s)B(s)E(s)R(s)C(s)第24頁,共120頁,2024年2月25日,星期天4.綜合點的移動(后移)綜合點后移G(s)

R(s)C(s)Q(s)Q(s)?

G(s)R(s)C(s)第25頁,共120頁,2024年2月25日,星期天G(s)

R(s)C(s)Q(s)綜合點后移證明推導(移動前)第26頁,共120頁,2024年2月25日,星期天G(s)

R(s)C(s)Q(s)?綜合點后移證明推導(移動后)第27頁,共120頁,2024年2月25日,星期天移動前G(s)

R(s)C(s)Q(s)Q(s)G(s)

R(s)C(s)?移動后綜合點后移證明推導(移動前后)第28頁,共120頁,2024年2月25日,星期天G(s)

R(s)C(s)Q(s)?綜合點后移證明推導(移動后)第29頁,共120頁,2024年2月25日,星期天G(s)

R(s)C(s)Q(s)G(s)

R(s)C(s)Q(s)G(s)綜合點后移等效關系圖第30頁,共120頁,2024年2月25日,星期天G(s)R(s)C(s)

Q(s)Q(s)?G(s)

R(s)C(s)綜合點前移第31頁,共120頁,2024年2月25日,星期天G(s)

R(s)C(s)Q(s)綜合點前移證明推導(移動前)第32頁,共120頁,2024年2月25日,星期天G(s)

R(s)C(s)Q(s)?綜合點前移證明推導(移動后)第33頁,共120頁,2024年2月25日,星期天移動前G(s)R(s)C(s)

Q(s)G(s)

R(s)C(s)Q(s)?移動后綜合點前移證明推導(移動前后)第34頁,共120頁,2024年2月25日,星期天4.綜合點的移動(前移)綜合點前移證明推導(移動后)G(s)

R(s)C(s)Q(s)?第35頁,共120頁,2024年2月25日,星期天4.綜合點的移動(前移)綜合點前移等效關系圖G(s)R(s)C(s)

Q(s)G(s)

R(s)C(s)Q(s)1/G(s)第36頁,共120頁,2024年2月25日,星期天綜合點之間的移動R(s)C(s)

Y(s)X(s)

R(s)C(s)

Y(s)X(s)

第37頁,共120頁,2024年2月25日,星期天4.綜合點之間的移動結論:結論:多個相鄰的綜合點可以隨意交換位置。R(s)C(s)

Y(s)X(s)

R(s)C(s)

Y(s)X(s)

第38頁,共120頁,2024年2月25日,星期天5.引出點的移動引出點后移G(s)R(s)C(s)R(s)?G(s)R(s)C(s)R(s)問題:要保持原來的信號傳遞關系不變,

?等于什么。第39頁,共120頁,2024年2月25日,星期天引出點后移等效變換圖G(s)R(s)C(s)R(s)G(s)R(s)C(s)1/G(s)R(s)第40頁,共120頁,2024年2月25日,星期天引出點前移問題:要保持原來的信號傳遞關系不變,?等于什么。G(s)R(s)C(s)C(s)G(s)R(s)C(s)?C(s)第41頁,共120頁,2024年2月25日,星期天引出點前移等效變換圖G(s)R(s)C(s)C(s)G(s)R(s)C(s)G(s)C(s)第42頁,共120頁,2024年2月25日,星期天引出點之間的移動ABR(s)BAR(s)第43頁,共120頁,2024年2月25日,星期天引出點之間的移動相鄰引出點交換位置,不改變信號的性質(zhì)。ABR(s)BAR(s)第44頁,共120頁,2024年2月25日,星期天五舉例說明(例1)例1:利用結構圖變換法,求位置隨動系統(tǒng)的傳遞函數(shù)Qc(s)/Qr(s)

。第45頁,共120頁,2024年2月25日,星期天例題分析由動態(tài)結構圖可以看出該系統(tǒng)有兩個輸入

r,ML(干擾)。我們知道:傳遞函數(shù)只表示一個特定的輸出、輸入關系,因此,在求

c對

r的關系時,根據(jù)線性疊加原理,可取力矩

ML=0,即認為ML不存在。要點:結構變換的規(guī)律是:由內(nèi)向外逐步進行。第46頁,共120頁,2024年2月25日,星期天例題化簡步驟(1)合并串聯(lián)環(huán)節(jié):第47頁,共120頁,2024年2月25日,星期天例題化簡步驟(2)內(nèi)反饋環(huán)節(jié)等效變換:第48頁,共120頁,2024年2月25日,星期天例題化簡步驟(3)合并串聯(lián)環(huán)節(jié):第49頁,共120頁,2024年2月25日,星期天例題化簡步驟(4)反饋環(huán)節(jié)等效變換:第50頁,共120頁,2024年2月25日,星期天例題化簡步驟(5)求傳遞函數(shù)Qc(s)/Qr(s)

:第51頁,共120頁,2024年2月25日,星期天五舉例說明(例2)例2:系統(tǒng)動態(tài)結構圖如下圖所示,試求系統(tǒng)傳遞函數(shù)C(s)/R(s)。第52頁,共120頁,2024年2月25日,星期天例2(例題分析)本題特點:具有引出點、綜合交叉點的多回路結構。第53頁,共120頁,2024年2月25日,星期天例2(解題思路)解題思路:消除交叉連接,由內(nèi)向外逐步化簡。第54頁,共120頁,2024年2月25日,星期天#例2(解題方法一之步驟1)將綜合點2后移,然后與綜合點3交換。第55頁,共120頁,2024年2月25日,星期天例2(解題方法一之步驟2)第56頁,共120頁,2024年2月25日,星期天例2(解題方法一之步驟3)第57頁,共120頁,2024年2月25日,星期天例2(解題方法一之步驟4)內(nèi)反饋環(huán)節(jié)等效變換第58頁,共120頁,2024年2月25日,星期天例2(解題方法一之步驟5)內(nèi)反饋環(huán)節(jié)等效變換結果第59頁,共120頁,2024年2月25日,星期天例2(解題方法一之步驟6)串聯(lián)環(huán)節(jié)等效變換第60頁,共120頁,2024年2月25日,星期天例2(解題方法一之步驟7)串聯(lián)環(huán)節(jié)等效變換結果第61頁,共120頁,2024年2月25日,星期天例2(解題方法一之步驟8)內(nèi)反饋環(huán)節(jié)等效變換第62頁,共120頁,2024年2月25日,星期天例2(解題方法一之步驟9)內(nèi)反饋環(huán)節(jié)等效變換結果第63頁,共120頁,2024年2月25日,星期天例2(解題方法一之步驟10)反饋環(huán)節(jié)等效變換第64頁,共120頁,2024年2月25日,星期天例2(解題方法一之步驟11)等效變換化簡結果第65頁,共120頁,2024年2月25日,星期天例2(解題方法二)將綜合點③前移,然后與綜合點②交換。第66頁,共120頁,2024年2月25日,星期天例2(解題方法三)引出點A后移第67頁,共120頁,2024年2月25日,星期天例2(解題方法四)引出點B前移第68頁,共120頁,2024年2月25日,星期天結構圖化簡步驟小結確定輸入量與輸出量。如果作用在系統(tǒng)上的輸入量有多個,則必須分別對每個輸入量逐個進行結構圖化簡,求得各自的傳遞函數(shù)。若結構圖中有交叉聯(lián)系,應運用移動規(guī)則,首先將交叉消除,化為無交叉的多回路結構。對多回路結構,可由里向外進行變換,直至變換為一個等效的方框,即得到所求的傳遞函數(shù)。第69頁,共120頁,2024年2月25日,星期天結構圖化簡注意事項:有效輸入信號所對應的綜合點盡量不要移動;盡量避免綜合點和引出點之間的移動。第70頁,共120頁,2024年2月25日,星期天五、用梅森(S.J.Mason)

公式求傳遞函數(shù)梅森公式的一般式為:第71頁,共120頁,2024年2月25日,星期天梅森公式參數(shù)解釋:第72頁,共120頁,2024年2月25日,星期天注意事項:“回路傳遞函數(shù)”是指反饋回路的前向通路和反饋回路的傳遞函數(shù)的乘積,并且包含代表反饋極性的正、負號。第73頁,共120頁,2024年2月25日,星期天第三節(jié)動態(tài)結構圖梅遜(Mason)公式輸入與輸出兩個節(jié)點間的總傳輸(或叫總增益),可用下面的梅遜公式來求?。菏街校害ぁ帕鲌D的特征式。

Δ=1-(所有不同回路增益之和)+(所有兩個互不接觸回路增益乘積之和)–(所有三個互不接觸回路乘積之和)+……=1- ——第k條前向通路的增益;

=r個互不接觸回路中第m種可能組合的增益乘積;

N——前向通道的總數(shù);

Δk——與第k條前向通道不接觸的那部分信流圖的Δ;第74頁,共120頁,2024年2月25日,星期天例1利用梅遜公式,求:C(s)/R(s)解:畫出該系統(tǒng)的信號流程圖第75頁,共120頁,2024年2月25日,星期天該系統(tǒng)中有四個獨立的回路:

L1=-G4H1 L2=-G2G7H2 L3=-G6G4G5H2L4=-G2G3G4G5H2互不接觸的回路有一個L1L2。所以,特征式

Δ=1-(L1+L2+L3+L4)+L1L2該系統(tǒng)的前向通道有三個:

P1=G1G2G3G4G5 Δ1=1 P2=G1L6G4G5 Δ2=1P3=G1G2G7 Δ3=1-L1

第76頁,共120頁,2024年2月25日,星期天因此,系統(tǒng)的閉環(huán)系統(tǒng)傳遞函數(shù)C(s)/R(s)為第77頁,共120頁,2024年2月25日,星期天例2:畫出信流圖,并利用梅遜公式求取它的傳遞函數(shù)C(s)/R(s)。信流圖:第78頁,共120頁,2024年2月25日,星期天注意:圖中C位于比較點的前面,為了引出C處的信號要用一個傳輸為1的支路把C、D的信號分開。系統(tǒng)中,單獨回路有L1、L2和L3,互不接觸回路有

L1L2,即前向通路只有一條,即

第79頁,共120頁,2024年2月25日,星期天所以例3:例4:第80頁,共120頁,2024年2月25日,星期天例5:試求如圖所示系統(tǒng)的傳遞函數(shù)C(s)/R(s)第81頁,共120頁,2024年2月25日,星期天求解步驟之一(例1)找出前向通路數(shù)n第82頁,共120頁,2024年2月25日,星期天求解步驟之一(例1)前向通路數(shù):n=1第83頁,共120頁,2024年2月25日,星期天求解步驟之二(例1)確定系統(tǒng)中的反饋回路數(shù)第84頁,共120頁,2024年2月25日,星期天1.尋找反饋回路之一第85頁,共120頁,2024年2月25日,星期天1.尋找反饋回路之二第86頁,共120頁,2024年2月25日,星期天1.尋找反饋回路之三第87頁,共120頁,2024年2月25日,星期天1.尋找反饋回路之四第88頁,共120頁,2024年2月25日,星期天利用梅森公式求傳遞函數(shù)(1)第89頁,共120頁,2024年2月25日,星期天利用梅森公式求傳遞函數(shù)(1)第90頁,共120頁,2024年2月25日,星期天利用梅森公式求傳遞函數(shù)(2)第91頁,共120頁,2024年2月25日,星期天求余子式

1將第一條前向通道從圖上除掉后的圖,再用特征式的求法,計算第92頁,共120頁,2024年2月25日,星期天求余式

1將第一條前向通道從圖上除掉后的圖圖中不再有回路,故

1=1第93頁,共120頁,2024年2月25日,星期天利用梅森公式求傳遞函數(shù)(3)第94頁,共120頁,2024年2月25日,星期天例6:用梅森公式求傳遞函數(shù)試求如圖所示的系統(tǒng)的傳遞函數(shù)。第95頁,共120頁,2024年2月25日,星期天求解步驟之一:確定反饋回路第96頁,共120頁,2024年2月25日,星期天求解步驟之一:確定反饋回路第97頁,共120頁,2024年2月25日,星期天求解步驟之一:確定反饋回路第98頁,共120頁,2024年2月25日,星期天求解步驟之一:確定反饋回路第99頁,共120頁,2024年2月25日,星期天求解步驟之一:確定反饋回路第100頁,共120頁,2024年2月25日,星期天求解步驟之二:確定前向通路第101頁,共120頁,2024年2月25日,星期天求解步驟之二:確定前向通路第102頁,共120頁,2024年2月25日,星期天求解步驟之三:求總傳遞函數(shù)第103頁,共120頁,2024年2月25日,星期天例7:對例6做簡單的修改第104頁,共120頁,2024年2月25日,星期天①求反饋回路1第105頁,共120頁,2024年2月25日,星期天②求反饋回路2第106頁,共120頁,2024年2月25日,星期天③求反饋回路3第107頁,共120頁,2024年2月25日,星期天④求反饋回路4第108頁,共120頁,2024年2月25日,星期天2.①兩兩互不相關的回路1第109頁,共120頁,2024年2月25日,星期天②兩兩互不相關的回路2第110頁,共120頁,2024年2月25日,星期天3.①求前向通路1第111頁,共120頁,2024年2月25

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論