版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第01講二元一次方程(2個知識點+2類題型+18道強(qiáng)化訓(xùn)練)課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)1.二元一次方程的定義;2.二元一次方程的解;1.掌握二元一次方程的定義;2.掌握二元一次方程的解;知識點1:二元一次方程定義概念:含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1的方程,叫做二元一次方程.【即學(xué)即練1】1.(2023下·浙江溫州·七年級校聯(lián)考期中)下列方程是二元一次方程的是(
)A. B. C. D.【答案】D【分析】根據(jù)二元一次方程的定義進(jìn)行判斷.【詳解】解:A、該方程含有個未知數(shù),故本選項不合題意;B、該方程中含有個未知數(shù),并且含有未知數(shù)最高次數(shù)是,故本選項不合題意;C、該方程是分式方程,故本選項不合題意;D、該方程中含有個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是,屬于二元一次方程,故本選項符合題意;故選:D.【點睛】本題考查了二元一次方程的定義.二元一次方程必須符合以下三個條件:方程中只含有個未知數(shù);含未知數(shù)項的最高次數(shù)為一次;方程是整式方程.【即學(xué)即練2】2.(2023下·浙江寧波·七年級統(tǒng)考期中)下列各式中,屬于二元一次方程的是()A. B. C. D.【答案】A【分析】利用二元一次方程的定義:含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1的方程是二元一次方程判斷即可.【詳解】解:A、是二元一次方程,故本選項符合題意;B、只有一個未知數(shù),不是二元一次方程,故本選項不符合題意;C、含有未知數(shù)的項的次數(shù)是2,不是二元一次方程,故本選項不符合題意;D、含有未知數(shù)的項的次數(shù)是2,不是二元一次方程,故本選項不符合題意;故選:A.【點睛】此題考查了二元一次方程的定義,熟練掌握二元一次方程的定義是解本題的關(guān)鍵.知識點2:二元一次方程的解使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解.【即學(xué)即練3】3.(2023下·浙江溫州·七年級校聯(lián)考階段練習(xí))二元一次方程的正整數(shù)解共有(
)組A.3 B.4 C.5 D.6【答案】B【分析】根據(jù)二元一次方程的解的概念:一般地,使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解即可求出答案.【詳解】解:由題意可知:,∵x與y是正整數(shù),∴,∴,∴,∴或2或3或4,對應(yīng)的或9或6或3,∴二元一次方程的所有正整數(shù)解有:,,,,共4組,故選:B.【點睛】此題考查了解二元一次方程,掌握二元一次方程正整數(shù)解的概念是解題的關(guān)鍵.【即學(xué)即練4】4.(2023下·浙江衢州·七年級??计谥校┒淮畏匠痰囊唤M解可以是(
)A. B. C. D.【答案】A【分析】將各項的解分別代入方程中計算,判斷其結(jié)果是否等于11即可;【詳解】解:將代入中可得,則A符合題意;將代入中可得,則B不符合題意;將代入中可得,則C不符合題意;將代入中可得,則D不符合題意;故選:A.【點睛】本題考查二元一次方程的解的定義,此為基礎(chǔ)且重要知識點,必須熟練掌握.題型01二元一次方程的定義1.(2023上·陜西西安·八年級??茧A段練習(xí))下列各式是二元一次方程的是(
)A. B. C. D.【答案】C【分析】本題考查了二元一次方程的定義,熟記“含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程”是解題關(guān)鍵.【詳解】解:A、不是二元一次方程,不符合題意;B、中,所含未知數(shù)的項的次數(shù)最高為2,不是二元一次方程,不符合題意;C、,是二元一次方程,符合題意;D、中,含有三個未知數(shù),不是二元一次方程,不符合題意;故選:C.2.(2023上·陜西榆林·八年級校聯(lián)考期末)若是關(guān)于的二元一次方程,則的值為(
)A. B. C.0 D.1【答案】D【分析】本題考查二元一次方程的定義,理解二元一次方程的定義(只含有兩個未知數(shù)且未知數(shù)最高次數(shù)為1的整式方程叫做二元一次方程)是解答的關(guān)鍵.【詳解】解:∵是關(guān)于的二元一次方程,,故選:D.3.(2023下·七年級課時練習(xí))下列各式中屬于二元一次方程的有(
)①;②;③;④;⑤;⑥;⑦;⑧.A.3個 B.4個 C.5個 D.6個【答案】B【詳解】根據(jù)定義可知①②③⑧是二元一次方程.⑧應(yīng)先化為一般形式或再作判斷;④中未知數(shù)項的次數(shù)是2次,而不是1次,它不是二元一次方程;⑤⑥是代數(shù)式,不是方程;⑦含有三個未知數(shù),它不是二元一次方程.故正確的有①②③,選B.易錯點分析:容易錯選A.錯誤的認(rèn)為⑧是二次方程,沒有將此方程化簡后再看.此類題目屬于不定項選擇,對二元一次方程概念的理解不清楚容易導(dǎo)致錯解.4.(2023下·福建廈門·七年級??茧A段練習(xí))若方程是關(guān)于x,y的二元一次方程,則a的值為(
)A.3 B. C. D.2【答案】A【分析】根據(jù)二元一次方程的定義解答即可.【詳解】解:∵方程是關(guān)于x,y的二元一次方程,∴,,解得,故選:A.【點睛】本題考查二元一次方程的定義,解題關(guān)鍵是理解含有兩個未知數(shù),且未知數(shù)的最高次數(shù)是1的整式方程是二元一次方程,特別含未知數(shù)項前面的系數(shù)不為0.5.(2023上·福建福州·七年級福建師大附中??计谀┮阎顷P(guān)于x,y的二元一次方程,則.【答案】【分析】本題考查了二元一次方程的定義,由定義得,即可求解;理解“含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程,二元一次方程的標(biāo)準(zhǔn)形式(,).”是解題的關(guān)鍵.【詳解】解:由題意得,解得:,故答案:.6.(2023上·陜西西安·八年級??茧A段練習(xí))若關(guān)于,的方程是二元一次方程,則.【答案】2【分析】本題主要考查二元一次方程的概念,二元一次方程滿足的條件:含有2個未知數(shù),含未知數(shù)的項的次數(shù)是1的整式方程,據(jù)此解答即可.【詳解】解:根據(jù)題意得:,解得.故答案為:.7.(2022上·陜西西安·八年級校考期中)若方程是關(guān)于,的二元一次方程,則的值為.【答案】【分析】根據(jù)二元一次方程的定義解答即可.【詳解】解:∵是關(guān)于,的二元一次方程,∴,解得:,故答案為:.【點睛】本題考查了二元一次方程的定義,解題關(guān)鍵是熟知二元一次方程的定義:含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程.8.(2023下·海南省直轄縣級單位·八年級??计谀┌逊匠虒懗捎煤械拇鷶?shù)式表示的形式,則;【答案】【分析】將看作已知數(shù),看作未知數(shù),表示即可.【詳解】解:移項,得:.故答案為:.【點睛】本題考查二元一次方程的知識.注意:要表示誰,誰就寫在等式的左面.9.(2022上·八年級課前預(yù)習(xí))哪些是二元一次方程?為什么?(1)x2+y=20;(2)2x+5=10;(3)2a+3b=1;(4)x2+2x+1=0;(5)2x+y+z=1.【答案】(3),見解析【詳解】解:(3)是二元一次方程,理由是含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程.10.(2021上·全國·八年級專題練習(xí))已知方程(m﹣2)xn﹣1+2y|m﹣1|=m是關(guān)于x、y的二元一次方程,求m、n的值.【答案】m=0,n=2【分析】利用二元一次方程的定義判斷即可確定出m與n的值.【詳解】解:∵(m﹣2)xn﹣1+2y|m﹣1|=m是關(guān)于x、y的二元一次方程,∴n﹣1=1,|m﹣1|=1,解得:n=2,m=0或2,若m=2,方程為2y=2,不合題意,舍去,則m=0,n=2.【點睛】此題考查了二元一次方程的定義,二元一次方程和二元一次方程組中系數(shù)的求解,要同時考慮兩個未知數(shù)的系數(shù)與次數(shù),不管方程的形式如何變化,必須滿足含有兩個未知數(shù),含未知數(shù)的項的次數(shù)是一次且方程左右兩邊都是整式這三個條件..題型02二元一次方程的解1.(2024上·四川成都·八年級統(tǒng)考期末)二元一次方程的一個解是()A. B. C. D.【答案】A【分析】本題主要考查了二元一次方程的解.正確利用二元一次方程的解的意義是解題的關(guān)鍵.將四個選項分別代入原方程,能使方程左右兩邊相等的未知數(shù)的值是方程的解.【詳解】解:∵將代入原方程,左邊右邊,∴A選項符合題意;∵將代入原方程,左邊右邊,∴B選項不符合題意;將代入原方程,左邊右邊,∴C選項不符合題意;∵將代入原方程,左邊右邊,∴D選項不符合題意.故選:A.2.(2024上·四川達(dá)州·八年級校考期末)已知是方程的一個解,那么的值是(
)A.3 B.1 C. D.【答案】B【分析】本題主要考查二元一次方程的解以及解一元一次方程,理解并掌握二元一次方程的解的定義是解題關(guān)鍵.根據(jù)題意,將代入方程,然后求解即可獲得答案.【詳解】解:根據(jù)題意,是方程的一個解,則將代入方程,可得,解得.故選:B.3.(2022上·黑龍江哈爾濱·八年級哈爾濱風(fēng)華中學(xué)??奸_學(xué)考試)已知,用含x的代數(shù)式表示y正確的是(
)A. B. C. D.【答案】C【分析】此題考查了解二元一次方程,把x看作已知數(shù)求出y即可.【詳解】解:,故選:C.4.(2023上·遼寧沈陽·八年級統(tǒng)考期末)下列4組數(shù)值中,不是二元一次方程的解的是(
)A. B. C. D.【答案】A【分析】本題科考查了二元一次方程的解,能使二元一次方程左右兩邊相等的值,即為二元一次方程的解,據(jù)此即可作答.【詳解】解:A、把代入,則,故不是二元一次方程的解;B、把代入,則,故是二元一次方程的解;C、把代入,則,故是二元一次方程的解;D、把代入,則,故是二元一次方程的解;故選:A5.(2023上·甘肅張掖·八年級??茧A段練習(xí))請寫出二元一次方程的一組解.【答案】(答案不唯一)【分析】本題考查了二元一次方程的解,解題的關(guān)鍵是掌握二元一次方程解的定義,根據(jù)“使二元一次方程兩邊相等的未知數(shù)的值是二元一次方程的解”進(jìn)行解答即可.【詳解】解:當(dāng)時,,解得:,∴是原方程的一組解,故答案為:(答案不唯一).6.(2022下·廣西南寧·七年級??茧A段練習(xí))若是方程的解,則.【答案】3【分析】根據(jù)使方程成立的未知數(shù)的值,是方程的解,把代入方程,計算即可.【詳解】解:把代入,得:,解得:;故答案為:3.7.(2022上·陜西渭南·八年級統(tǒng)考期末)關(guān)于,的二元一次方程的解是,則的值為.【答案】7【分析】本題考查二元一次方程的解的定義,將代入二元一次方程,即得出關(guān)于的等式,是解決問題的關(guān)鍵.【詳解】解:將代入,得:,解得:,故答案為:7.8.(2023下·四川涼山·七年級校考階段練習(xí))已知,,則當(dāng)時,.【答案】1【分析】將帶入原方程即可求解.【詳解】解:將帶入,得:,解得:,故答案為:1.【點睛】本題考查了二元一次方程的解,熟練掌握二元一次方程的解的意義是解題的關(guān)鍵.9.(2023下·河南周口·七年級校考階段練習(xí))已知關(guān)于,的二元一次方程.(1)求,的值;(2)判斷下列各數(shù)對哪些是該二元一次方程的解,請?zhí)顚懴卤恚ㄖ苯犹顚憽笆恰被颉安皇恰保當(dāng)?shù)對判斷數(shù)對是否是方程的解【答案】(1),(2)是;不是;是;不是【分析】(1)根據(jù)二元一次方程的定義得到,,解得,的值即可;(2)把數(shù)對代入方程驗證左邊是否等于右邊即可.【詳解】(1)解:∵是關(guān)于,的二元一次方程,∴,,解得,.(2)由(1)可知,關(guān)于,的二元一次方程,當(dāng)時,,是方程的解,當(dāng)時,,不是方程的解,當(dāng)時,,是方程的解,當(dāng)時,,不是方程的解,故答案為:是;不是;是;不是【點睛】此題考查了二元一次方程的定義和二元一次方程的解,熟練掌握二元一次方程的定義是解題的關(guān)鍵.10.(2022下·河北邯鄲·七年級統(tǒng)考期末)已知是二元一次方程的一個解.(1)則_________(2)試直接寫出二元一次方程的所有正整數(shù)解.【答案】(1)5(2),【分析】(1)將代入二元一次方程2x+y=a中,即可求得a的值;(2)將a的值代入方程2x+y=a,再用列舉法求出方程的解即可.【詳解】(1)將代入二元一次方程2x+y=a中可得:,a=5;故答案為:5(2)把a(bǔ)=5代入方程2x+y=a中可得:2x+y=5,所以可列出所有正整數(shù)解為:,.【點睛】考查二元一次方程的解,解題關(guān)鍵是熟練掌握二元一次方程的解與二元一次方程的關(guān)系.A夯實基礎(chǔ)1.(2024上·河北保定·八年級統(tǒng)考期末)已知是關(guān)于,的二元一次方程的一個解,那么的值為(
)A. B.1 C. D.【答案】C【分析】本題考查了二元一次方程的解.把代入,即可求解.【詳解】解:∵是關(guān)于,的二元一次方程的一個解,∴,解得:.故選:C2.(2023上·遼寧沈陽·八年級統(tǒng)考期末)若方程是關(guān)于x,y的二元一次方程,則a的值為()A. B. C. D.1【答案】D【分析】本題考查的是二元一次方程的定義,含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程,據(jù)此可得.【詳解】解:∵方程是關(guān)于x,y的二元一次方程,∴且,解得.故選:D.3.(2023上·福建福州·七年級福建師大附中校考期末)已知是關(guān)于x,y的二元一次方程,則.【答案】【分析】本題考查了二元一次方程的定義,由定義得,即可求解;理解“含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程,二元一次方程的標(biāo)準(zhǔn)形式(,).”是解題的關(guān)鍵.【詳解】解:由題意得,解得:,故答案:.4.(2022下·廣西南寧·七年級??茧A段練習(xí))若是方程的解,則.【答案】3【分析】根據(jù)使方程成立的未知數(shù)的值,是方程的解,把代入方程,計算即可.【詳解】解:把代入,得:,解得:;故答案為:3.5.(2022下·河北邯鄲·七年級統(tǒng)考期末)已知是二元一次方程的一個解.(1)則_________(2)試直接寫出二元一次方程的所有正整數(shù)解.【答案】(1)5(2),【分析】(1)將代入二元一次方程2x+y=a中,即可求得a的值;(2)將a的值代入方程2x+y=a,再用列舉法求出方程的解即可.【詳解】(1)將代入二元一次方程2x+y=a中可得:,a=5;故答案為:5(2)把a(bǔ)=5代入方程2x+y=a中可得:2x+y=5,所以可列出所有正整數(shù)解為:,.【點睛】考查二元一次方程的解,解題關(guān)鍵是熟練掌握二元一次方程的解與二元一次方程的關(guān)系.6.(2023下·河南周口·七年級??茧A段練習(xí))已知關(guān)于,的二元一次方程.(1)求,的值;(2)判斷下列各數(shù)對哪些是該二元一次方程的解,請?zhí)顚懴卤恚ㄖ苯犹顚憽笆恰被颉安皇恰保當(dāng)?shù)對判斷數(shù)對是否是方程的解【答案】(1),(2)是;不是;是;不是【分析】(1)根據(jù)二元一次方程的定義得到,,解得,的值即可;(2)把數(shù)對代入方程驗證左邊是否等于右邊即可.【詳解】(1)解:∵是關(guān)于,的二元一次方程,∴,,解得,.(2)由(1)可知,關(guān)于,的二元一次方程,當(dāng)時,,是方程的解,當(dāng)時,,不是方程的解,當(dāng)時,,是方程的解,當(dāng)時,,不是方程的解,故答案為:是;不是;是;不是【點睛】此題考查了二元一次方程的定義和二元一次方程的解,熟練掌握二元一次方程的定義是解題的關(guān)鍵.B能力提升1.(2024上·四川成都·八年級四川省成都市石室聯(lián)合中學(xué)校聯(lián)考期末)下列是二元一次方程的是(
)A. B. C. D.【答案】D【分析】本題考查了二元一次方程,根據(jù)二元一次方程的定義“含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程”即可得,掌握二元一次方程的定義是解題的關(guān)鍵.【詳解】解:A、,是一元一次方程,不是二元一次方程,選項說法錯誤,不符合題意;B、,不是二元一次方程,選項說法錯誤,不符合題意;C、,不是二元一次方程,選項說法錯誤,不符合題意;D、,是二元一次方程,選項說法正確,符合題意;故選:D.2.(2024上·山東淄博·七年級統(tǒng)考期末)二元一次方程的正整數(shù)解有(
)組.A.1 B.2 C.3 D.4【答案】A【分析】本題考查了二元一次方程的解,先用的代數(shù)式表示出,再求出正整數(shù)解即可.【詳解】解:,,,所以正整數(shù)解是:,共1組,故選:A.3.(2024上·河南周口·八年級校聯(lián)考期末)已知是關(guān)于,的二元一次方程的解,則的值為.【答案】【分析】本題考查方程的解的概念,將代入中求解,即可解題.【詳解】解:是關(guān)于,的二元一次方程的解,,解得,故答案為:.4.(2024·全國·七年級競賽)若正整數(shù)滿足,則的最小值是.【答案】676【分析】本題考查了二元一次方程.由已知整理得,因為671和5互質(zhì),推出是5的倍數(shù),是671的倍數(shù),據(jù)此求解即可.【詳解】解:由,得,即,因為671和5互質(zhì),是5的倍數(shù),是671的倍數(shù),所以的最小值是.故答案為:676.5.(2023上·陜西西安·八年級校聯(lián)考階段練習(xí))若方程是關(guān)于,的二元一次方程,求的平方根.【答案】【分析】本題考查了二元一次方程的概念,根據(jù)只含有2個未知數(shù),未知數(shù)的項的次數(shù)是1的整式方程是二元一次方程,列出方程,即可求出、的值,再代入即可得出答案.【詳解】解:根據(jù)題意,得:,,解得:,,,的平方根為.6.(2024下·全國·七年級假期作業(yè))是否存在m,使方程是關(guān)于x,y的二元一次方程?若存在,求出m的值;若不存在,請說明理由.【答案】存在,【詳解】解:存在.∵方程是關(guān)于x,y的二元一次方程,∴,,,解得.故當(dāng)時,方程是關(guān)于x,y的二元一次方程.C綜合素養(yǎng)1.(2023上·河北保定·八年級統(tǒng)考階段練習(xí))在二元一次方程中,若,均為正整數(shù),則該方程的解的組數(shù)有(
)A.組 B.組 C.組 D.組【答案】C【分析】本題考查了二元一次方程的解,熟練掌握求二元一次方程正整數(shù)解的方法是解答本題的關(guān)鍵.根據(jù)題意得,二元一次方程,變形得到,利用已知條件,均為正整數(shù),得到滿足條件的解有,,,由此選出答案.【詳解】解:由已知得:二元一次方程,,又,均為正整數(shù),,,,二元一次方程的解的組數(shù)有組,故選:.2.(2023下·河北滄州·七年級校考期中)若方程組的解是則方程組的解是(
)A. B. C. D.【答案】B【分析】先觀察兩方程組的特點,由于兩方程組的形式相同,故可用換元法把它們化為同一方程組,再令其解相同即可.【詳解】觀察兩個方程組可設(shè),,∵,∴,,∴,故選:.【點睛】此題考查了二元一次方程組的解,解題的關(guān)鍵是運用整體代入思想及換元法求解.3.(2023上·上海閔行·六年級校聯(lián)考期中)一個圓盤里擺12顆糖,一個方盤里擺13顆糖,小張發(fā)現(xiàn)他有110顆糖恰好可以擺滿所有的盤子,請問這時圓盤有個.【答案】7【分析】本題考查了二元一次方程的解,解題的關(guān)鍵是設(shè)圓盤有x個,方盤有y個,列出方程,求出正整
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨時工知識產(chǎn)權(quán)合同樣本
- 2024-2030年飲料項目可行性研究報告
- 2024-2030年食品超市行業(yè)市場發(fā)展分析及發(fā)展前景與投資研究報告
- 2024-2030年顆粒啤酒花行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2024-2030年隔音玻璃行業(yè)風(fēng)險投資態(tài)勢及投融資策略指引報告
- 2024-2030年除草劑行業(yè)兼并重組機(jī)會研究及決策咨詢報告
- 2024-2030年間規(guī)聚苯乙烯行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2024-2030年鋰電池隔膜行業(yè)市場發(fā)展分析及前景趨勢與投資發(fā)展戰(zhàn)略研究報告
- 2024-2030年鈹金屬行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2024-2030年鐵氟龍F(tuán)EP行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 軟土地基處理新技術(shù)-課件
- 護(hù)士長崗位競聘分析課件
- 有趣的植物課件
- 《農(nóng)村勞動人員就業(yè)問題分析【論文】》
- 中職《形體與化妝技巧》課程標(biāo)準(zhǔn)
- 醫(yī)學(xué)英語教程(4)課件
- 網(wǎng)絡(luò)傳播法導(dǎo)論-第五章課件
- 《短歌行》理解性默寫
- 部編版正視發(fā)展挑戰(zhàn)優(yōu)秀公開課課件
- 50篇美文背3500單詞英譯英(全)
- 餐飲企業(yè)消毒記錄表模版
評論
0/150
提交評論