版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濟南市長清區(qū)2023-2024學年中考二模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在“朗讀者”節(jié)目的影響下,某中學開展了“好書伴我成長”讀書活動.為了解5月份八年級300名學生讀書情況,隨機調查了八年級50名學生讀書的冊數,統(tǒng)計數據如下表所示:冊數01234人數41216171關于這組數據,下列說法正確的是()A.中位數是2 B.眾數是17 C.平均數是2 D.方差是22.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為()A. B. C.3 D.3.如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發(fā),沿AC方向勻速運動到終點C,動點Q從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達終點.連結MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是()A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小4.某校今年共畢業(yè)生297人,其中女生人數為男生人數的65%,則該校今年的女畢業(yè)生有()A.180人B.117人C.215人D.257人5.cos30°的相反數是()A. B. C. D.6.在平面直角坐標系中,點P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7.如圖,正比例函數y=x與反比例函數y=4x的圖象交于A(2,2)、B(﹣2,﹣2)兩點,當y=x的函數值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>28.關于的一元二次方程有兩個不相等的實數根,則實數的取值范圍是A. B. C. D.9.如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數為()A.31° B.28° C.62° D.56°10.將一些半徑相同的小圓按如圖所示的規(guī)律擺放,第1個圖形有4個小圓,第2個圖形有8個小圓,第3個圖形有14個小圓,…,依次規(guī)律,第7個圖形的小圓個數是()A.56 B.58 C.63 D.7211.我國古代《易經》一書中記載,遠古時期,人們通過在繩子上打結來記錄數量,即“結繩計數”.如圖,一位母親在從右到左依次排列的繩子上打結,滿七進一,用來記錄孩子自出生后的天數,由圖可知,孩子自出生后的天數是()A.84 B.336 C.510 D.132612.如圖是一個由5個相同的正方體組成的立體圖形,它的俯視圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.(11·湖州)如圖,已知A、B是反比例函數(k>0,x<0)圖象上的兩點,BC∥x軸,交y軸于點C.動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設四邊形OMPN的面積為S,P點運動時間為t,則S關于t的函數圖象大致為14.若方程x2﹣2x﹣1=0的兩根分別為x1,x2,則x1+x2﹣x1x2的值為_____.15.計算:|﹣5|﹣=_____.16.已知是銳角,那么cos=_________.17.當2≤x≤5時,二次函數y=﹣(x﹣1)2+2的最大值為_____.18.我國經典數學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設水深為x尺,則蘆葦長用含x的代數式可表示為尺,根據題意列方程為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:
設銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當x<16時,為“不稱職”,當時為“基本稱職”,當時為“稱職”,當時為“優(yōu)秀”.根據以上信息,解答下列問題:補全折線統(tǒng)計圖和扇形統(tǒng)計圖;求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數和眾數;為了調動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標準,凡月銷售額達到或超過這個標準的銷售員將獲得獎勵。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為多少萬元(結果去整數)?并簡述其理由.20.(6分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當第一次與外切時,求平移的時間.21.(6分)某小學學生較多,為了便于學生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.按約定,“小李同學在該天早餐得到兩個油餅”是事件;(可能,必然,不可能)請用列表或樹狀圖的方法,求出小張同學該天早餐剛好得到豬肉包和油餅的概率.22.(8分)全面兩孩政策實施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:甲家庭已有一個男孩,準備再生一個孩子,則第二個孩子是女孩的概率是;乙家庭沒有孩子,準備生兩個孩子,求至少有一個孩子是女孩的概率.23.(8分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數y=在第一象限內的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=1.求反比例函數解析式;求點C的坐標.24.(10分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.25.(10分)解分式方程:=26.(12分)如圖,已知點C是∠AOB的邊OB上的一點,求作⊙P,使它經過O、C兩點,且圓心在∠AOB的平分線上.27.(12分)如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點坐標為(用含m的代數式表示);(2)求△ABC的面積(用含a的代數式表示);(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題解析:察表格,可知這組樣本數據的平均數為:(0×4+1×12+2×16+3×17+4×1)÷50=;∵這組樣本數據中,3出現了17次,出現的次數最多,∴這組數據的眾數是3;∵將這組樣本數據按從小到大的順序排列,其中處于中間的兩個數都是2,∴這組數據的中位數為2,故選A.考點:1.方差;2.加權平均數;3.中位數;4.眾數.2、A【解析】∵∠AED=∠B,∠A=∠A
∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.3、C【解析】如圖所示,連接CM,∵M是AB的中點,∴S△ACM=S△BCM=S△ABC,開始時,S△MPQ=S△ACM=S△ABC;由于P,Q兩點同時出發(fā),并同時到達終點,從而點P到達AC的中點時,點Q也到達BC的中點,此時,S△MPQ=S△ABC;結束時,S△MPQ=S△BCM=S△ABC.△MPQ的面積大小變化情況是:先減小后增大.故選C.4、B【解析】
設男生為x人,則女生有65%x人,根據今年共畢業(yè)生297人列方程求解即可.【詳解】設男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【點睛】本題考查了一元一次方程的應用,根據題意找出等量關系列出方程是解答本題的關鍵.5、C【解析】
先將特殊角的三角函數值代入求解,再求出其相反數.【詳解】∵cos30°=,∴cos30°的相反數是,故選C.【點睛】本題考查了特殊角的三角函數值,解答本題的關鍵是掌握幾個特殊角的三角函數值以及相反數的概念.6、A【解析】
分點P的橫坐標是正數和負數兩種情況討論求解.【詳解】①m-3>0,即m>3時,2-m<0,所以,點P(m-3,2-m)在第四象限;②m-3<0,即m<3時,2-m有可能大于0,也有可能小于0,點P(m-3,2-m)可以在第二或三象限,綜上所述,點P不可能在第一象限.故選A.【點睛】本題考查了各象限內點的坐標的符號特征,記住各象限內點的坐標的符號是解決的關鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、D【解析】試題分析:觀察函數圖象得到當﹣2<x<0或x>2時,正比例函數圖象都在反比例函數圖象上方,即有y=x的函數值大于y=4考點:1.反比例函數與一次函數的交點問題;2.數形結合思想的應用.8、A【解析】
根據一元二次方程的根的判別式,建立關于m的不等式,求出m的取值范圍即可.【詳解】∵關于x的一元二次方程x2﹣3x+m=0有兩個不相等的實數根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故選A.【點睛】本題考查了根的判別式,解題的關鍵在于熟練掌握一元二次方程根的情況與判別式△的關系,即:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.9、D【解析】
先利用互余計算出∠FDB=28°,再根據平行線的性質得∠CBD=∠FDB=28°,接著根據折疊的性質得∠FBD=∠CBD=28°,然后利用三角形外角性質計算∠DFE的度數.【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【點睛】本題考查了平行線的性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.10、B【解析】試題分析:第一個圖形的小圓數量=1×2+2=4;第二個圖形的小圓數量=2×3+2=8;第三個圖形的小圓數量=3×4+2=14;則第n個圖形的小圓數量=n(n+1)+2個,則第七個圖形的小圓數量=7×8+2=58個.考點:規(guī)律題11、C【解析】由題意滿七進一,可得該圖示為七進制數,化為十進制數為:1×73+3×72+2×7+6=510,故選:C.點睛:本題考查記數的方法,注意運用七進制轉化為十進制,考查運算能力,屬于基礎題.12、C【解析】
根據俯視圖的概念可知,只需找到從上面看所得到的圖形即可.【詳解】解:從上面看易得:有2列小正方形,第1列有2個正方形,第2列有2個正方形,故選C.【點睛】考查下三視圖的概念;主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看所得到的圖形;二、填空題:(本大題共6個小題,每小題4分,共24分.)13、A【解析】試題分析:①當點P在OA上運動時,OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數,開口向上;②當點P在AB上運動時,設P點坐標為(x,y),則S=xy=k,為定值,故B、D選項錯誤;③當點P在BC上運動時,S隨t的增大而逐漸減小,故C選項錯誤.故選A.考點:1.反比例函數綜合題;2.動點問題的函數圖象.14、1【解析】根據題意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案為1.15、1【解析】分析:直接利用二次根式以及絕對值的性質分別化簡得出答案.詳解:原式=5-3=1.故答案為1.點睛:此題主要考查了實數運算,正確化簡各數是解題關鍵.16、【解析】
根據已知條件設出直角三角形一直角邊與斜邊的長,再根據勾股定理求出另一直角邊的長,由三角函數的定義直接解答即可.【詳解】由sinα==知,如果設a=x,則c=2x,結合a2+b2=c2得b=x.∴cos==.故答案為.【點睛】本題考查的知識點是同角三角函數的關系,解題的關鍵是熟練的掌握同角三角函數的關系.17、1.【解析】
先根據二次函數的圖象和性質判斷出2≤x≤5時的增減性,然后再找最大值即可.【詳解】對稱軸為∵a=﹣1<0,∴當x>1時,y隨x的增大而減小,∴當x=2時,二次函數y=﹣(x﹣1)2+2的最大值為1,故答案為:1.【點睛】本題主要考查二次函數在一定范圍內的最大值,掌握二次函數的圖象和性質是解題的關鍵.18、(x+1);.【解析】試題分析:設水深為x尺,則蘆葦長用含x的代數式可表示為(x+1)尺,根據題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)補全統(tǒng)計圖如圖見解析;(2)“稱職”的銷售員月銷售額的中位數為:22萬,眾數:21萬;“優(yōu)秀”的銷售員月銷售額的中位數為:26萬,眾數:25萬和26萬;(3)月銷售額獎勵標準應定為22萬元.【解析】
(1)根據稱職的人數及其所占百分比求得總人數,據此求得不稱職、基本稱職和優(yōu)秀的百分比,再求出優(yōu)秀的總人數,從而得出銷售26萬元的人數,據此即可補全圖形.(2)根據中位數和眾數的定義求解可得;(3)根據中位數的意義求得稱職和優(yōu)秀的中位數即可得出符合要求的數據.【詳解】(1)依題可得:
“不稱職”人數為:2+2=4(人),
“基本稱職”人數為:2+3+3+2=10(人),
“稱職”人數為:4+5+4+3+4=20(人),
∴總人數為:20÷50%=40(人),
∴不稱職”百分比:a=4÷40=10%,
“基本稱職”百分比:b=10÷40=25%,
“優(yōu)秀”百分比:d=1-10%-25%-50%=15%,
∴“優(yōu)秀”人數為:40×15%=6(人),
∴得26分的人數為:6-2-1-1=2(人),
補全統(tǒng)計圖如圖所示:
(2)由折線統(tǒng)計圖可知:“稱職”20萬4人,21萬5人,22萬4人,23萬3人,24萬4人,
“優(yōu)秀”25萬2人,26萬2人,27萬1人,28萬1人;
“稱職”的銷售員月銷售額的中位數為:22萬,眾數:21萬;
“優(yōu)秀”的銷售員月銷售額的中位數為:26萬,眾數:25萬和26萬;
(3)由(2)知月銷售額獎勵標準應定為22萬.
∵“稱職”和“優(yōu)秀”的銷售員月銷售額的中位數為:22萬,
∴要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為22萬元.【點睛】考查頻數分布直方圖、扇形統(tǒng)計圖、中位數、眾數等知識,解題的關鍵是靈活運用所學知識解決問題.20、(1)直線的解析式為:.(2)平移的時間為5秒.【解析】
(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據待定系數法求出函數的解析式.(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【詳解】(1)由題意得,∴點坐標為.∵在中,,,∴點的坐標為.設直線的解析式為,由過、兩點,得,解得,∴直線的解析式為:.(2)如圖,設平移秒后到處與第一次外切于點,與軸相切于點,連接,.則,∵軸,∴,在中,.∵,∴,∴(秒),∴平移的時間為5秒.【點睛】本題綜合了待定系數法求函數解析式,以及圓的位置關系,其中兩圓相切時的輔助線的作法是經常用到的.21、(1)不可能事件;(2).【解析】
試題分析:(1)根據隨機事件的概念即可得“小李同學在該天早餐得到兩個油餅”是不可能事件;(2)根據題意畫出樹狀圖,再由概率公式求解即可.試題解析:(1)小李同學在該天早餐得到兩個油餅”是不可能事件;(2)樹狀圖法即小張同學得到豬肉包和油餅的概率為.考點:列表法與樹狀圖法.22、(1);(2)【解析】
(1)根據可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后確定至少有一個女孩的可能性,然后可求概率.【詳解】解:(1)(1)第二個孩子是女孩的概率=;故答案為;(2)畫樹狀圖為:
共有4種等可能的結果數,其中至少有一個孩子是女孩的結果數為3,
所以至少有一個孩子是女孩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.23、(1)反比例函數解析式為y=;(2)C點坐標為(2,1)【解析】
(1)由S△BOD=1可得BD的長,從而可得D的坐標,然后代入反比例函數解析式可求得k,從而得解析式為y=;(2)由已知可確定A點坐標,再由待定系數法求出直線AB的解析式為y=2x,然后解方程組即可得到C點坐標.【詳解】(1)∵∠ABO=90°,OB=1,S△BOD=1,∴OB×BD=1,解得BD=2,∴D(1,2)將D(1,2)代入y=,得2=,∴k=8,∴反比例函數解析式為y=;(2)∵∠ABO=90°,OB=1,AB=8,∴A點坐標為(1,8),設直線OA的解析式為y=kx,把A(1,8)代入得1k=8,解得k=2,∴直線AB的解析式為y=2x,解方程組得或,∴C點坐標為(2,1).24、證明見解析.【解析】
根據在同圓中等弦對的弧相等,AB、CD是⊙O的直徑,則,由FD=EB,得,,由等量減去等量仍是等量得:,即,由等弧對的圓周角相等,得∠D=∠B.【詳解】解:方法(一)證明:∵AB、CD是⊙O的直徑,∴.∵FD=EB,∴.∴.即.∴∠D=∠B.方法(二)證明:如圖,連接CF,AE.∵AB、CD是⊙O的直徑,∴∠F=∠E=90°(直徑所對的圓周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【點睛】本題利用了在同圓中等弦對的弧相等,等弧對的弦,圓周角相等,等量減去等量仍是等量求解.25、x=1【解析】
分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.【詳解】方程兩邊都乘以x(x﹣2),得:x=1(x﹣2),解得:x=1,檢驗:x=1時,x(x﹣2)=1×1=1≠0,則分式方程的解為x=1.【點睛】本題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.26、答案見解析【解析】
首先作出∠AOB的角平分線,再作出OC的垂直平分線,兩線的交點就是圓心P,再以P為圓心,PC長為半徑畫圓即可.【詳解】解:如圖所示:.【點睛】本題考查基本作圖,掌握垂直平分線及角平分線的做法是本題的解題關鍵..27、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數解析式由一般式變形為頂點式,此題得解;(2)過點C作直線AB的垂線,交線段AB的延長線于點D,由AB∥x軸且AB=1,可得出點B的坐標為(m+2,1a+2m?2),設BD=t,則點C的坐標為(m+2+t,1a+2m?2?t),利用二次函數圖象上點的坐標特征可得出關于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出S△ABC的值;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度教育展覽布展服務合同書3篇
- 2024版基站建設場地使用費合同
- 2025年度特種車輛抵押融資合同樣本4篇
- 2025年度智能農業(yè)設備代售合同協(xié)議范本4篇
- 2024網絡安全防護系統(tǒng)建設與運維合同
- 2025年度文化產業(yè)發(fā)展場協(xié)作伙伴關系合同4篇
- 2024選購排水溝蓋板及排水設施維修保養(yǎng)合同3篇
- 2025年度環(huán)保節(jié)能設備研發(fā)與應用授權合同3篇
- 2024年度航空航天零部件維保與技術支持合同3篇
- 2025年專業(yè)廚師勞務派遣聘用合同規(guī)范文本4篇
- 春節(jié)文化常識單選題100道及答案
- 12123交管學法減分考試題及答案
- 2024年杭州師范大學附屬醫(yī)院招聘高層次緊缺專業(yè)人才筆試真題
- 制造業(yè)BCM業(yè)務連續(xù)性管理培訓
- 商場停車場管理制度
- 2025年寒假實踐特色作業(yè)設計模板
- 24年追覓在線測評28題及答案
- TGDNAS 043-2024 成人靜脈中等長度導管置管技術
- 《陸上風電場工程概算定額》NBT 31010-2019
- 藥房(冰柜)溫濕度表
- QJ903.9A-1995航天產品工藝文件管理制度管理用工藝文件編制規(guī)則
評論
0/150
提交評論