版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Dead-timeCompensationofSVPWMBasedonDSPTMS320F2812forPMSMSongXuelei*,WenXuhui,GuoXinhua,andZhaoFengInstituteofElectricalEngineering,ChineseAcademyofSciences,Beijing,P.R.ChinaE-mail:songxl@Abstract—Thedead-timeeffectinathree-phasevoltagesourceinvertercanresultinvoltagelosses,currentwaveformdistortionandtorquepulsation.Inordertoimprovethecurrentwaveformanddecreasethetorquepulsation,thispaperproposesadead-timecompensationmethodofSVPWM.Thismethoddividestheiα-iβplaneintosixsectorsandcompensatesthedead-timeofSVPWMaccordingtothesectornumberofstatorcurrentvectordeterminedbytheα-andβ-axiscomponentsofthestatorcurrentvectorinthetwo-phasestaticreferenceframe.Inaddition,thismethodcanbeimplementedentirelythroughsoftwarewithoutanyextrahardware.FinallyexperimentsbasedonDSPTMS320F2812areestablishedandmade,andtheexperimentresultsindicatethattheproposedmethodiscorrectandfeasible.IndexTerms--dead-timecompensation,SVPWM,PMSM,TMS320F2812I.INTRODUCTIONBecausethepermanentmagnetsynchronousmachine(PMSM)hasalotofadvantagessuchashighpowerdensity,highefficiency,hightorquetoinertiaratio,highreliability,etal[1],therefore,thePMSMdrivingsystemhavebeenwidelyusedinmanyapplicationfields,especiallyinhybridelectricvehicles(HEV)inrecentyears[2]-[6].InthePMSMdrivingsystem,thethree-phasevoltagesourceinverterisusuallyadoptedandtheIGBTandMOSFETarealsousedbecauseoftheirfastswitchingfrequency.Forthethree-phasevoltagesourceinverter,inordertoavoidtheshortcircuitofthedclinkoccurringwhenthetwoswitchdevicesofthesamephaseareturnedonsimultaneously,thedead-timeisusuallyinsertedinthegatedrivingswitchsignals.Duringthedurationofthedead-time,bothofthetwoswitchdeviceofthesamephaseareturnedoff.Theexistingofthedead-timewillleadtoaseriesofdead-timeeffectproblemssuchasvoltagelosses,currentwaveformdistortionandtorquepulsation,especiallyundertheconditionofsmallcurrentorlowspeed.SVPWM(SpaceVectorPulseWidthModulation)isapopularmodulationmethodforthree-phasevoltagesourceinverterinmotordrivingsystem.Inordertoimprovethecurrentwaveformofmotorsanddecreasethetorquepulsationofmotors,severaldead-timecompensationmethodsofSVPWMhavebeenresearchedandusedinthemotordrivingsystem[7]-[11].Mostofthecompensationmethodsarebasedonthetheoryofaveragevoltagedeviation.Inthispaper,anoveldead-timecompensationmethodofSVPWM,whichisalsobasedonthetheoryofaveragevoltagedeviation,isproposed.Thismethoddividestheiα-iβplaneintosixsectorsandcompensatesthedeadtimeofSVPWMaccordingtothestatorcurrentvectorangleφdeterminedbytheα-andβ-axiscomponentsofthestatorcurrentvectorintheα-βreferenceframe.Inaddition,thismethodcanbeimplementedentirelythroughsoftwarewithoutanyextrahardwaredesign.FinallyexperimentsaremadeonthePMSMdrivingplatformbasedonDSPTMS320F2812totestandverifytheproposedcompensationmethod.II.DEAD-TIMECOMPENSATIONMETHODFig.1showsthetopologydiagramofthePMSMdrivingsystemwhoseinvertunitadoptsthethree-phasevoltagesourceinverter.InFig.1,Q1,Q2,Q3,Q4,Q5andQ6aresixIGBTsofthethree-phasevoltagesourceinverter,andD1,D2,D3,D4,D5andD6aretheirreverseparalleldiodesrespectively.Inaddition,thedrivingswitchsignalsg1,g2,g3,g4,g5andg6areprovidedbythecontrolunitofthedrivingsystem.Definethephasecurrentsia,ibandicarepositivewhentheyflowfromtheinvertertoPMSM,andnegativewhentheyflowfromPMSMtotheinverter.ThereareeightswitchcombinationstatesforthesixIGBTsinthethreephasevoltagesourceinverter,andduringthedurationofdead-time,therearecorrespondinglysixcurrentcombinationstatesforthree-phasecurrentsia,ibandicaccordingtotheirpolarity:(1)ia>0,ib<0andic<0;(2)ia>0,ib>0andic<0;(3)ia<0,ib>0andic<0;(4)ia<0,ib>0andic>0;(5)ia<0,ib<0andic>0;(6)ia>0,ib<0andic>0.Itisveryimportantanddifficulttodetectthezerocrosspointorthepolarityofeachphasecurrent.Traditionally,ifthezero-crosspointisdetectdirectlythroughA/DconverterofDSPorMCU,biggermeasurementdeviationwillbeledespeciallyundertheconditionofsmallcurrent,whichwillresultinbiggerdead-timecompensationdeviationandalsoaffecttheresultofdead-timecompensation.Therefore,thispaperadoptsanindirectlymethodtodetectthezero-crosspointofphasecurrent,whichisbasedonthecurrentvectorangleφinthetwo-phasestaticreferenceframe.Forconvenientanalysisandillustration,placethethree-phasecurrentsia,ib,icinthethree-phasestaticreferenceframeandthetwocurrentcomponentsiα,iβofthecurrentvectorinthetwo-phasestaticreferenceframeintothesamefigure,whichisshowninFig.2.Accordingtothepolarityofthree-phasecurrentsia,ib,ic,theiα-iβplaneinthetwo-phasestaticreferenceframecanbedividedintosixsectors:I(1),II(2),III(3),IV(4),V(5)andVI(6).Foreachsectorintheiα-iβplane,thereisacorrespondingdead-timecompensationrule.Inotherwords,oncethesectorwhichthecurrentvectorbelongstoisknown,thedead-timeeffectcanbecompensatedaccordingtothecorrespondingcompensationrule.Therefore,recognizingthesectornumberofthecurrentvectoristhekeyproblem.Inthispaper,thesectornumberisdeterminedbythecurrentvectorangleφwhichcanbecalculatedthroughtheα-andβ-axiscomponentsofthestatorcurrentvector.Equation(1)showsthecalculationmethodofthecurrentvectorφ,andequation(2)showstherelationshipbetweenthesectornumberandthecurrentvectorφ.φ=kπ+arctan(iβ/iα)(k=0,1)Fig.2.CurrentPolarityandCurrentVectorAngle?TABLEIDEAD-TIMECOMPENSATIONRULESTABLEOFSVPWM(2)Forthree-phasevoltagesourceinverter,theessenceofdead-timecompensationistocompensatingthevoltagedeviation.However,inthedigitalmotordrivingandcontrolsystem,voltageregulationisimplementedthroughpulsewidthmodulation,thatis,throughregulatingthedutycycleofvoltagepulsewhichhassomethingtodowiththepulsewidthTinonePWMperiodTpwm.Therefore,infactitisthepulsewidthTthatiscompensatedinthepracticalapplication.TABLEIshowsthedead-timecompensationrulescorrespondingwiththepolarityofthree-phasecurrentsia,ib,icandthesectornumberofthecurrentvectorintheiα-iβplane.Itcanbeseenthatfordifferentsectorsoftheiα-iβplane,thecompensationvaluesarecorrespondinglydifferent.Inoneword,theproposeddead-timecompensationmethodcanbecarriedoutthroughthefollowingsteps:(1)Calculatethecurrentvectorangleφthroughtheα-andβ-axiscomponentsofthestatorcurrentvectorinthetwo-phasestaticreferenceframeaccordingtoequation(1).(2)Determinethesectornumberthroughthecurrentvectorangleφaccordingtoequation(2).(3)Executethedead-timecompensationalgorithmaccordingtothecompensationrulestableTABLEI.III.EXPERIMENTSInordertotestandverifytheproposeddead-timecompensationmethodofSVPWM,experimentsareestablishedandmade.TheexperimentsystemconsistsofPMSM,three-phasevoltagesourceinverter,controlplatform,dynamometer,heatdissipationsystem,etal.ThetypeofIGBTintheinverterisCM600DY-24AproducedbyMitsubishi.ThecontrolplatformisbasedonDSPTMS320F2812producedbyTexasInstrument.ItisaspecialmotorcontrolDSPwhichhasmanyadvantagesandcanimplementhigh-performancemotorcontrolsuchasFOC(FieldOrientedControl)andDTC(DirectTorqueControl).ThemainparametersofthecontrolobjectPMSMusedinexperimentsarelistedinTABLEII.Fordifferentpulsewidthcompensationvaluesof0.76μs,1.10μs,1.33μsand1.60μs,thedead-timecompensationexperimentsareallmade.Fig.3showstheexperimentwaveformsofthree-phasestatorcurrentsandthesectornumberofstatorcurrentvectorfordifferentpulsewidthcompensationvalues,andFig.4showsthecorrespondingfrequencyspectrums.TABLEIIMAINPARAMETERSOFPMSMUSEDINEXPERIMENTS(a)NoCompensation(b)PulseWidthCompensationValue=0.76μs(c)PulseWidthCompensationValue=1.10μs(d)PulseWidthCompensationValue=1.33μs(e)PulseWidthCompensationValue=1.60μsFig.3.ExperimentWaveformsofThree-phaseStatorCurrentsHere,theCPUfrequencyofDSPissetat150MHz,theswitchingfrequencyofIGBTsinthree-phasevoltageinverterissetat10kHz,thedead-timeissetat3.2μsthroughthehardwareandsoftwareofDSP,themotorcontrolmethodadoptsFOCalgorithm,thedclinkvoltageissetatabout330V,andthephasecurrentiscontrolledatabout10A.(a)NoCompensation(b)PulseWidthCompensationValue=0.76μs(c)PulseWidthCompensationValue=1.10μs(d)PulseWidthCompensationValue=1.33μs(e)PulseWidthCompensationValue=1.60μsFig.4.FrequencySpectrumofStatorCurrent(PhaseA)ItcanbeseenfromFig.3andFig.4that,comparedwithexperimentresultsofnocompensation,throughtheproposeddead-timecompensationalgorithmthethreephasestatorcurrentwaveformsofPMSMareallimprovedeffectivelyandtheharmoniccomponentsofthree-phasestatorcurrentsarealsodecreasedeffectively.Especiallywhenthepulsewidthcompensationvalueissetatabout1.10μs,comparedwithexperimentresultsattheotherpulsewidthcompensationvaluesof0.76μ,1.33μsand1.60μs,thecompensationresultisthebestandtheharmoniccomponentsofthree-phasestatorcurrentsaretheleast.Therefore,theproposeddead-timecompensationmethodiscorrectandfeasible.IV.CONCLUSIONSTheproposeddead-timecompensationmethodcanbeimplementedeasilythroughsoftwarealgorithmwithoutanyextrahardwaredesign.Solongasthecurrentvectorangleφisdeterminedbytheα-andβ-axiscomponentsofstatorcurrentvectorinthetwo-phasestaticreferenceframe,thedead-timecompensationalgorithmcanbecarriedouteffectivelyaccordingtothecorrespondingdead-timecompensationrulestable.FinallyexperimentsareestablishedandmadeonthePMSMdrivingplatformbasedonDSPTMS320F2812andtheresultsindicatethattheproposedmethodcanimprovethecurrentdistortionanddecreasethetorquepulsationeffectively,especiallywhenthepulsewidthcompensationvalueisequaltoabout1.10μs.Therefore,theproposedmethodiscorrectandfeasible.REFERENCES[1]SongChi,ZhengZhang,LongyaXu,“ARobust,EfficiencyOptimizedFlux-WeakeningControlAlgorithmforPMSynchronousMachines”,Proceedingsofthe2007IEEEIndustryApplicationsConference,pp.1308-1314,2007.[2]ZhangQianfan,LiuXiaofei,“PermanentMagneticSynchronousMotorandDrivesAppliedonaMid-sizeHybridElectricCar”,Proceedingsofthe2008IEEEVehiclePowerandPropulsionConference,pp.1-5,2008.[3]Y.Dai,L.Song,S.Cui,“DevelopmentofPMSMDrivesforHybridElectricCarApplications”,IEEETransactionsonMagnetics,Vol.43,No.1,pp.434-437,2007.[4]RahmanM.A.,“IPMMotorDrivesforHybridElectricVehicles”,Proceedingsofthe2007InternationalAegeanconferenceonElectricalMachinesandPowerElectronics,pp.109-115,2007.[5]RahmanM.A.,“HighEfficiencyIPMMotorDrivesforHybridElectricVehicles”,Proceedingsofthe2007CanadianConferenceonElectricalandComputerEngineering,pp.252-255,2007.[6]FuZ.X.,“Real-timePredictionofTorqueAvailabilityofanIPMSynchronousMachineDriveforHybridElectricVehicles”,Proceedingsofthe2005IEEEInternationalConferenceonElectricMachinesandDrives,pp.199-206,2005.[7]WangGao-lin,YuYong,YangRong-feng,XuDian-guo,“Dead-timeCompensationofSpaceVectorPWMInverterforInductionMotor”,ProceedingsoftheCSEE,Vol.28,No.15,pp.79-83,2008.[8]ZeyunChao,ZhixinXu,LiliKong,“ResearchofDeadtimeCompensationinSVPWMModulator”,ProceedingsofICEMS2008,pp.1973-1975,2008.[9]ZhouL.Q.,“Dead-timeCompensationMethodofSVPWMBasedonDSP”,Proceedingsofthe4thIEEEConferenceonIndustrialElectronicsandApplications,pp.2355-2358,2009.[10]QingboHu,HaibingHu,ZhengyuLu,WenxiYao,“ANovelMethodforDead-timeCompensationBasedonSVPWM”,ProceedingsofAPEC2005,Vol.3,pp.1867-1870,2005.[11]N.Urasaki,T.Senjyu,K.Uezato,T.Funabashi,“AnAdaptiveDead-timeCompensationStrategyforVoltageSourceInverterFedMotorDrives”,IEEETransactionsonPowerElectronics,vol.20,No.5,pp.1150-1160,2005.外文資料譯文基于TMS320F2812DSP的有死區(qū)時間補償?shù)腟VPWM調速永磁同步電動機宋雪蕾*溫徐匯,郭新華和趙峰北京電機工程學會,中國科學院,E-mail:songxl@抽象的死區(qū)時間的影響可導致逆變器三相電壓源電壓損失,電流波形畸變和轉矩脈動。為了改善目前的波形,并減少轉矩脈動,提出了一種SVPWM的死區(qū)時間補償方法。這種方法劃分iα–iβ平面為六個扇形區(qū)域,進入和補償?shù)乃绤^(qū)時間的SVPWM矢量根據(jù)定子柯部門數(shù)目這種方法劃分iα-iβ平面為6個扇形區(qū)域,補償?shù)腟VPWM死區(qū)時間,根據(jù)部門的α數(shù)和組件的定子β-軸由定子電流矢量的決定。此外,這一方法可以通過軟件實現(xiàn)完全沒有任何額外的硬件數(shù)字信號處理器TMS320F2812的基礎上最后的實驗,建立和作出的,而實驗結果表明,該方法是正確和可行的。關鍵詞:指數(shù)條款-死區(qū)補償,SVPWM的,永磁同步電機,TMS320F2812引言由于永磁同步電機(PMSM的)有很多優(yōu)勢,例如,高功率密度,高效率,高慣性力矩比,高可靠性等[1],因此,永磁同步電機驅動系統(tǒng)已被廣泛應用于許多應用領域,尤其是在最近幾年應用在混合動力(HEV)用電動汽車上[2]-[6]。在永磁同步電機驅動系統(tǒng),三相電壓源逆變器通常采用的IGBT和MOSFET也因為它們的開關頻率而普遍使用。為了避免短路的同時轉向裝置的直流環(huán)節(jié)發(fā)生的時候,雙方在同一階段的切換,死區(qū)時間通常是在門信號驅動開關的時候。在持續(xù)死區(qū)時間中,相都相同的兩個開關裝置處于關閉狀態(tài)。當時現(xiàn)有的死將導致一系列問題的死區(qū)時間的影響,例如,電壓損失,電流波形畸變和轉矩脈動,特別是在高速條件下的小電流或低??臻g矢量脈寬調制(空間矢量脈寬調制)在電機逆變器是一種流行的調制方式為3相電壓源驅動系統(tǒng)。為了提高電動機的電流波形,降低電機轉矩脈動,幾個死區(qū)時間補償?shù)腟VPWM方法進行了研究和系統(tǒng)在駕駛汽車[7]-[11].大部分的補償辦法是根據(jù)偏差理論的平均電壓。在此提出了一種新穎的死區(qū)時間補償?shù)腟VPWM方法,這也是基于平均電壓的偏差理論。這種方法劃分iα-iβ平面成6個部分,并彌補了時間的SVPWM根據(jù)定子電流矢量根據(jù)定子電流部門角度φ。確定的α-和β-定子軸的α組成部分的電流矢量中-β參照系。另外,該方法通過軟件可以實現(xiàn)完全沒有任何額外的硬件設計。最后的實驗,是基于數(shù)字信號處理器TMS320F2812的駕駛平臺,測試驗證了提出的PMSM和補償方法。死區(qū)補償方法圖1顯示了逆變器的拓撲圖的永磁同步電機驅動系統(tǒng)的轉化裝置采用了三相電壓。在圖1,Q1,Q2,Q3,Q4,Q5和Q6有6逆變器的IGBT的三相電壓源,和D1,D2和D3,D4,D5和D6中的反向平行二極管。另外,開關的驅動信號G1,G2,G3,G4,G5和G6是系統(tǒng)提供的驅動控制裝置。定義相電流Ia,Ib和Ic從永磁同步電動機變頻流向為正,當決定逆變流流向永磁同步電動機為負時。有8個開關的三相電壓源逆變器的六個IGBT組合狀態(tài),并在死區(qū)時間中,有相應的6個當前結合態(tài)對應三相電流IA,IB和IC根據(jù)自己的極性:(1)ia>0,ib<0andic<0;(2)ia>0,ib>0andic<0;(3)ia<0,ib>0andic<0;(4)ia<0,ib>0andic>0;(5)ia<0,ib<0andic>0;(6)ia>0,ib<0andic>0.圖1。拓撲圖的永磁同步電機驅動系統(tǒng)零交叉點或每個階段極性電流是非常重要和難以檢測的。照慣例,如果零交叉點檢測單片機直接通過數(shù)字信號處理器或/D轉換器,較大的測量誤差將導致特別是在小電流條件下,這將導致更大的死區(qū)時間補償?shù)钠?,也影響了死區(qū)時間補償結果。因此,本文采用一種間接的方法來檢測零交叉點,是在兩相靜止坐標系上基于電流矢量角φ來檢測的。為方便分析和說明,定義三相電流ia,ib,ic在三相靜止坐標系的兩個電流分量iα,iβ在兩相靜止坐標系電流矢量有相同的數(shù)字,這顯示在圖2。根據(jù)三相電流ia,ib,ic的極性,兩相靜止坐標系iα-iβ可分為6個部分:I(1),II(2),III(3),IV(4),V(5)和VI(6).對于兩相靜止坐標系iα-iβ每個部分,有相應的死區(qū)時間補償規(guī)則。換句話說,一旦該部分的電流矢量屬于已知,死區(qū)時間可以根據(jù)相應的補償規(guī)則得到補償。因此,認識到當前的矢量扇區(qū)數(shù)是關鍵問題。本文,該扇形的數(shù)目取決于電流矢量角φ,它可以通過計算α-和β-軸定子組件的電流矢量來得到。方程(1)顯示當前向量φ的計算方法,和方程(2)顯示了扇形和電流矢量φ之間的數(shù)量關系。φ=kπ+arctan(iβ/iα)(k=0,1)圖2電流極性和電流矢量角φ表一SVPWM死區(qū)時間補償規(guī)則表對于三相電壓源逆變器,對死區(qū)時間的本質補償,是補償電壓偏差。然而,在數(shù)字電機驅動和控制系統(tǒng)中,電壓調節(jié)是通過脈沖寬度調制,即通過調節(jié)占空比脈沖電壓,它是與脈沖寬T在一個脈寬調制的周期Tpwm。因此,事實上它是脈沖寬度T的實際應用中得到補償。表格一顯示死區(qū)時間補償規(guī)則相應的三相電流極性ia,ib,ic和扇區(qū)數(shù)目前的矢量在iα-iβ平面??梢钥闯觯瑢τ趇α-iβ坐標系的不同扇區(qū),相應的補償值是不同的。一句話,建議的死區(qū)時間補償方法可以進行通過以下步驟:在兩相靜止坐標系根據(jù)方程(1)通過α-和β-軸組件計算定子電流矢量的電流矢量角φ。通過電流矢量角φ根據(jù)方程(2)確定的部門數(shù)目根據(jù)表一執(zhí)行的死區(qū)補償算法的補償規(guī)則。三.實驗為了測試和驗證所提出的停滯時間補償?shù)腟VPWM方法,實驗建立了。該實驗系統(tǒng)由永磁同步電動機,三相電壓源逆變器,控制平臺,功率計,散熱系統(tǒng)等組成。IGBT逆變器類型是CM600DY-24A,三菱公司生產(chǎn)??刂破脚_是基于DSPTMS320F2812的,德州儀器生產(chǎn)。這是一個特殊的DSP控制的電機,具有許多優(yōu)點,并能實現(xiàn)高性能的電機控制,例如磁場定向控制(磁場定向控制)和DTC(直接轉矩控制)。對控制對象永磁同步電動機用于實驗的主要參數(shù)列于表二。對于不同的脈沖寬度補償值0.76μs,1.10μs,1.33μs以及1.60μs的死區(qū)補償?shù)膶嶒灦纪瓿闪?。圖3顯示了三相定子電流實驗波形和不同的脈沖寬度補償值對定子電流矢量部門數(shù)的影響,圖4顯示了相應的頻譜。參數(shù)單位數(shù)值相數(shù)-3極對數(shù)-5額定功率KW52額定轉速Rpm2500額定轉矩Nm200永久磁Wb0.104感應系數(shù)(d/q)mH0.33/0.50定子繞組的電阻Ω0.024表二永磁同步電動機主要技術參數(shù)和實驗(a)無補償(b)脈沖寬度補償值=0.76μ的脈沖寬度補償值=1.10μ的脈沖寬度補償值=1.33μ的脈沖寬度補償值=1.60μ的圖3。實驗波形三相定子電流在這里,DSP的CPU的頻率為150MHz,IGBT的開關的三相電壓型逆變器頻率為10kHz,通過硬件和DSP軟件死區(qū)時間定為3.2μs,F(xiàn)OC電機控制方法采用的算法,鏈接的直流電壓設置為約330V,和相電流控制在10A。無補償脈沖寬度補償值=0.76μ的脈沖寬度補償值=1.10μ的脈沖寬度補償值=1.33μ的脈沖寬度補償值=1.60μ的圖4。定子電流的頻率(相位譜一)從圖3和圖4可以看出,與不予補償試驗結果相比較,通過擬議的死區(qū)時間補償算法的三相永磁同步電動機定子電流波形都有效地提高,三相定子電流的諧波成分,也有效地降低。尤其是當脈沖寬度補償價值被設置約1.10μs時,相比于其他補償值的寬度脈沖的實驗結果如0.76μs,1.33μs以及1.60μs,補償結果是最好的,而且三相定子電流的諧波成分是最少的。因此,建議死區(qū)補償?shù)姆椒ㄊ钦_和可行的。四,總結擬議的死區(qū)時間補償方法可以通過軟件算法很容易實現(xiàn)無需任何額外硬件設計。只要目前的矢量角φ是由定子電流矢量在兩相靜止坐標系上的α-和β-軸組件決定,死區(qū)補償算法可以按相應停滯時間有效地進行。最后的實驗是建立完善了基于DSPTMS320F2812的驅動永磁同步電動機作平臺,其結果表明,該方法可以改善目前的失真,降低扭矩,尤其是當脈沖寬度補償值等于約1.10μs。因此,該方法是正確和可行的。REFERENCES[1]SongChi,ZhengZhang,LongyaXu,“ARobust,EfficiencyOptimizedFlux-WeakeningControlAlgorithmforPMSynchronousMachines”,Proceedingsofthe2007IEEEIndustryApplicationsConference,pp.1308-1314,2007.[2]
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年華東師大版九年級英語下冊月考試卷含答案
- 2024年蘇教新版四年級語文下冊階段測試試卷
- 科技研發(fā)中心租賃續(xù)簽策略
- 2024年滬教版九年級英語下冊月考試卷
- 2024年魯教版選修5地理上冊階段測試試卷含答案
- 新材料研發(fā)董事長聘任合同
- 環(huán)保技術服務渠道施工合同
- 服務業(yè)人防法規(guī)管理辦法
- 林業(yè)院校校長聘任合同范本
- 運動健身場所污水管網(wǎng)施工協(xié)議
- 《人力資源管理》大學期末測試題庫500題(含答案)
- 加盟店鋪轉手合同
- CQI-23模塑系統(tǒng)評估審核表-中英文
- 《顱內壓增高的臨床表現(xiàn)》教學課件
- 2024-2025學年北師大版九年級數(shù)學上冊期中培優(yōu)試題
- 《建筑工程設計文件編制深度規(guī)定》(2022年版)
- 【教案】Unit+4+My+Favourite+Subject大單元整體教學設計人教版英語七年級上冊
- 七年級體育《排球》教案
- 癲癇發(fā)作急救與護理
- 鋼板樁圍堰施工專項方案
- 2024年版的企業(yè)績效評價標準
評論
0/150
提交評論