




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10738
UsingSurvey-to-SurveyImputationtoFillPovertyDataGapsataLowCost
EvidencefromaRandomizedSurveyExperiment
Hai-AnhDang
TalipKilic
VladimirHlasny
KseniyaAbanokova
CalogeroCarletto
WORLDBANKGROUP
DevelopmentEconomics
DevelopmentDataGroup
March2024
PolicyResearchWorkingPaper10738
Abstract
Surveydataonhouseholdconsumptionareoftenunavailableorincomparableovertimeinmanylow-andmiddle-incomecountries.BasedonauniquerandomizedsurveyexperimentimplementedinTanzania,thisstudyoffersnewandrigorousevidencedemonstratingthatsurvey-to-surveyimputationcanfillconsumptiondatagapsandprovidelow-costandreliablepovertyestimates.Basicimputationmodelsfeaturingutilityexpenditures,togetherwithamodestsetofpredictorsondemographics,employment,householdassets,andhousing,yieldaccuratepredictions.Imputationaccuracyisrobusttovaryingthesurveyquestionnairelength,thechoiceofbasesurveysforestimatingtheimputationmodel,differentpovertylines,
andalternative(quarterlyormonthly)ConsumerPriceIndexdeflators.Theproposedapproachtoimputationalsoperformsbetterthanmultipleimputationandarangeofmachinelearningtechniques.Inthecaseofatargetsurveywithmodified(shortenedoraggregated)foodornon-foodconsumptionmodules,imputationmodelsincludingfoodornon-foodconsumptionaspredictorsdowellonlyifthedistributionsofthepredictorsarestandardizedvis-à-visthebasesurvey.Forthebest-performingmodelstoreachacceptablelevelsofaccuracy,theminimumrequiredsamplesizeshouldbe1,000forboththebaseandtargetsurveys.Thediscussionexpandsontheimplicationsofthefindingsforthedesignoffuturesurveys.
ThispaperisaproductoftheDevelopmentDataGroup,DevelopmentEconomics.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp.Theauthorsmay
becontactedathdang@andtkilic@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
UsingSurvey-to-SurveyImputationtoFillPovertyDataGapsataLowCost:EvidencefromaRandomizedSurveyExperiment
Hai
-AnhDang,TalipKilic,VladimirHlasny,KseniyaAbanokovaandCalogeroCarletto*
Keywords:consumption,poverty,survey-to-surveyimputation,householdsurveys,Tanzania.
JELCodes:C15,I32,O15.
*TheseniorauthorshipissharedbetweenDangandKilic.Dang
(hdang@;
correspondingauthor)isasenioreconomistintheLivingStandardsandMeasurementStudy(LSMS)UnitattheWorldBankDevelopmentDataGroupinWashington,DCandisalsoaffiliatedwithGLO,IZA,IndianaUniversity,andLondonSchoolofEconomicsandPoliticalScience;Kilic
(tkilic@;
correspondingauthor)istheseniorprogrammanagerfortheLSMSUnitattheWorldBankDevelopmentDataGroupinWashington,DC;Hlasny(vhlasny@)isaneconomicaffairsofficerattheUNESCWAinBeirut,Lebanon;Abanokova
(kabanokova@)
isaneconomistintheLSMSUnitattheWorldBankDevelopmentDataGroupinWashington,DC;andCarletto
(gcarletto@)
istheseniormanagerfortheLSMSandtheStrategyandOperationsUnitsattheWorldBankDevelopmentDataGroupinWashington,DC.WewouldliketothankBenoitDercef,AndrewDillon,AnneSwindale,andparticipantsatthe2023EuropeanSurveyResearchAssociation(ESRA)conference,theIPA/GRPLconference(Northwestern)andvariousseminarsandworkshopsatAustralianNationalUniversity,UniversityofOxford,andtheWorldBankforhelpfuldiscussionandfeedbackontheearlierdrafts.WearegratefulforthefundingfromtheUnitedStatesAgencyforInternationalDevelopment(USAID).
2
1.Introduction
Householdconsumptionsurveydatathatunderliemonetarypovertyestimatesinlow-andmiddle-incomecountriesareoftenunavailable,unreliableorincomparable.Toaddressthesechallenges,imputation-basedmethodshavebecomeincreasinglymorecommonnotonlytofillpovertydatagapsindata-scarceandresource-constrainedcontexts,butalsotoidentifyproject/programbeneficiariesandevaluatedevelopmentproject/programimpactsonpovertyat
lowcost(WorldBank,2021;SmytheandBlumenstock,2022;DangandLanjouw,2023).
1
Buildingontheseminaltechniquethatobtainssmallareaestimatesofmonetarypovertybyimputingfromahouseholdconsumptionsurveyintoacensus(Elbersetal.,2003),survey-to-surveyimputationbuildsanimputationmodelusingappropriatepredictorvariablesfromanexistingolderconsumptionsurvey(basesurvey),whichcanbesubsequentlyappliedtothesamevariablesinanothernon-consumptionsurvey(targetsurvey)toprovidepovertyestimatesforthelattersurvey.Thetargetsurveycanbeeitheranexisting,non-consumptionsurvey,suchasaDemographicandHealthSurvey(DHS)oralaborforcesurvey(StifelandChristiaensen,2007;Douidichetal.,2016),orapurposefullycommissionedsurveythatonlycollectstherequisitepredictors.Recentapplicationsalsoincludesourcingthedatafortherequisitepredictorsfromadministrativerecordstoimputepovertyforhard-to-reachrefugeepopulations(Altindagetal.,2021;DangandVerme,2023),orphonecalldetailrecordstotargettheultra-poor(Aikenetal.,
2023).
Threekeyconceptual,butunderstudied,issuesmotivateourwork.First,theliteratureon
survey-to-surveyimputationhaslongemphasizedtherequirementofhavingidenticalquestions
1Imputationtechniquesarewidelyusedbyinternationalorganizationsandnationalstatisticalagenciestofillinmissingdatagapssuchaseducationstatistics(UOE,2020)andincomedata(USCensusBureau,2017).SeealsoDangandLanjouw(2023)forarecentreviewofpovertyimputationstudies.
3
forpovertypredictorsinbothbaseandtargetsurveys.However,evenifthisrequirementisfulfilled,substantialdifferencesmaystillexistbetweenbaseversustargetsurveysregardinglength,thematicscope,andcomplexityofquestionnaires.Thesedifferencesmayleadtoconsiderabledifferencesininterviewdurationandrespondentburden,whichcanaffectmeasurementindiversewaysthatareultimatelycontext-andsubject-specific(Kreuteretal.,2011;Eckmanetal.,2014).Inourcase,theunderstudiedtopiciswhetherpovertyimputationaccuracycanbeaffectedbythefactthatthetargetsurveyquestionnaire,bydesign,wouldbelighterandlessburdensomethanitsolder,basesurveycounterpart–eveniftherequisitequestionsunderlyingthepovertypredictorsareidenticalacrossbaseandtargetsurveyquestionnaires.TheonlyavailableevidenceregardingthisquestioncomesfromarandomizedexperimentthatwasimplementedinMalawibutnotreplicatedelsewhere,andthatshowsthemeasurementofpovertypredictorscanindeedbeaffectedbythelengthofthetargetsurveyinawaythatcanalsoimpact
predictedpovertyestimates(KilicandSohnesen,2019).
Thesecondandrelatedissueiswhethershorterconsumptionmodulesincludedinatargetsurvey(e.g.,withreducedoraggregateditemlistsvis-à-visthebasesurvey)canprovidecheaper-to-collectbutreliablepredictorsthatcanfurtherboosttheaccuracyofpovertypredictionsundermarginaladditionalcostsofdatacollection.Inthiscase,therequisitequestionsunderlyingthepovertypredictorsmaybenon-identicalacrossbaseandtargetsurveyquestionnaires–relaxingtheaforementionedtraditionalrequirementforsurvey-to-surveyimputation.Inthisrespect,onlytwostudiesexist,andtheyofferinconclusiveevidence.WhileChristiaensenetal.(2022)suggestthatusingconsumptionsub-aggregatesforpovertyimputationonlyworksundercertainstringentconditions,Dangetal.(forthcoming)analyze14surveysfromvariouscountriesanddemonstrate
thataddinghouseholdutilityexpenditurestoabasicimputationmodelwithhousehold
4
demographicandemploymentattributescanproduceaccuratepovertypredictions-consistentlywithinthe95percentconfidenceinternal,andoftenwithinonestandarderror,oftheobserved
“true”povertyrate.
2
Finally,thelastissuemotivatingourworkisthatexistingstudiesthat“validate”imputedpovertyestimateswereimplementedinartificialsettings.Specifically,thesestudiestypicallypursuevalidationbyestimatinganimputationmodelonanolder,baseconsumptionsurveyandapplyingthemodeltoamorerecent,targetconsumptionsurvey,pretendingthattherewerenoconsumptiondatainthelattersurvey.Thesestudiessubsequentlycomparetheresultingimputedestimatetothetruepovertyratebasedontheactualconsumptiondatainthetargetsurvey.Thefactthatthenewersurveyroundservesbothasthetargetsurveyandasthesourceoftruepovertyabstractsawayfromreal-lifedifferencesinbaseversustargetsurveydesignthatmotivateourworkinthefirstplace.Thesetraditionalartificialsettingsalsodifferfrommanypracticalapplicationsforsurvey-to-surveyimputationwhereanewsurveywithadifferentdesignisimplementedasthetargetsurvey(e.g.,asurveythatdoesnotcollectconsumptiondataorthatadministerslighter
consumptionmodules-asinthecaseofmostproxy-meanstests).
Againstthisbackground,wereportonauniquerandomizedandnationallyrepresentativehouseholdsurveyexperimentthatwasimplementedinTanzaniain2022tosystematicallyinvestigatetheunderstudiedtopicsthathaveabearingontheoperational/practicalapplicationsofsurvey-to-surveyimputationtofillpovertydatagaps.Theexperimentfeaturedthreetreatmentarms(TA)thatsampledhouseholdswererandomlyassignedtoandthatdifferedintermsofquestionnairedesign.TreatmentArm1(TA1)householdswereadministeredaquestionnairethat
collectscomprehensivedataonhouseholdconsumptionandallowsforthecomputationof
2Weusetheterm“true”povertyratetorefertothepovertyratethatcanbeestimatedusingtheactualhouseholdconsumptiondata.
5
benchmarkpovertyestimates,whichisidenticaltothequestionnaireforthebasesurveythatpermitstheestimationofawiderangeofcompetingimputationmodels.TA2householdswereadministeredalightquestionnairevariantthatonlyincludedquestionsthatpermittheestimationofadata-modestsubsetofimputationmodels,whichadditionallyincludestheTA1foodconsumptionmodulebutwithareducedlistofkeyfooditems.Finally,TA3householdswereadministeredanalternativelightquestionnairethatsharesthesamecoreastheTA2questionnaireandthatincludesalternate,aggregatedversionsofTA1foodandnon-foodconsumptionmodules.ThesedataareinturncomplementedwiththedatafromthenationallyrepresentativeTanzaniaNationalPanelSurvey(TZNPS),andspecificallytheTZNPS2020/21and2019/20roundsthatareusedasbasesurveysfortheestimationoftheimputationmodelsthatareinturnappliedtoeach
treatmentarmtoobtainacross-yearpredictions.
Throughourresearch,wemakenovelcontributionstotheliteratureby(a)providingexperimentalevidenceregardingtheeffectsoftargetsurveydesignonpovertyimputation,(b)sidesteppingusualconcernsregardingthe“validation”ofimputedestimatesbyofferingareal-lifesettingwithbenchmarkdata,and(c)providingnewevidenceregardingtheminimum-requiredbaseandtargetsurveysamplesizes.Toourknowledge,weofferthefirststudythatleveragesarandomizedandnationallyrepresentativesurveyexperimenttorigorouslystudytheseinter-connected,butlittle-explored,researchquestionsthatareattheheartofsurvey-to-surveyimputation.Inthissense,ourworkisalsobroadlyrelatedtoagrowingliteraturethatreliesonrandomizedsurveyexperimentsinlow-andmiddle-incomecontextstogaugetherelativeaccuracyandcost-effectivenessofcompetingsurveymethodsvis-à-visgold-standardmeasurementapproaches(Beegleetal.,2012;Arthietal.,2018;Gourlayetal.,2019;DeWeerdtetal,2020;
Kilicetal.,2021;Abateetal.,2023).
6
Theanalysisdemonstratesthatifthepredictorsinthetargetsurveyareelicitedthroughquestionsthatareidenticaltotheircounterpartsinthebasesurvey,imputationaccuracyisnotimpactedbytheremainingdifferencesbetweenthebaseandtargetsurveysintermsofscopeandcomplexity.Basicimputationmodels,includingacoresetofpredictorsondemographics,employment,householdassetsandhousing,and/orutilityexpenditures,yieldhighlyaccuratepredictionsvis-à-visthetruepovertyrate.Furthermore,regardingTA2orTA3withmodified(eithershortenedoraggregated)foodandnon-foodconsumptionmodules,imputationmodelsincludingfoodconsumptionornon-foodconsumptionexpendituresaspredictorsdowellonlyifthedistributionsofthepredictorsarestandardizedvis-à-visthebasesurvey(whichcanbeeithertheTZNPSorTA1).Finally,forthebest-performingmodelstoreachacceptablelevelsofaccuracy,theanalysisshowsthattheminimum-requiredsamplesizeshouldbe1,000observationsforboththebasesurveyandthetargetsurvey.Theresultsarerobusttothechoiceofbasesurveysusedforimputationmodelestimation;differentpovertylines;andalternative(quarterlyormonthly)CPIdeflators.Ourproposedapproachtoimputationisalsoshowntoperformbetterthan
multipleimputationandarangeofmachinelearningtechniques.
Thispaperconsistsofsixsections.Section2presentstheexperimentaldesign(Section2.1)anddescriptivestatistics(Section2.2).Section3discussestheanalyticalframework.Section4presentsthemainestimationresults(Section4.1)androbustnesschecks(Section4.2),followedbysection5onvariousextensions.Section6concludes.WeprovideadditionalestimationresultsinAppendixA,furtherdescriptionoftheconsumptionaggregatesinAppendixB,andmore
detaileddiscussionoftheformulasandintuitionbehindthemethodinAppendixC.
7
2.Experimentaldesignanddescriptivestatistics
2.1.Experimentaldesign
ThedatacomefromtheTanzaniaMethodologicalSurveyExperimentonHouseholdConsumptionMeasurement,whichwasconductedfromApriltoJuly2022bytheTanzaniaNationalBureauofStatistics,withtechnicalsupportfromtheWorldBankLivingStandardsMeasurementStudy(LSMS)program.InformedbythepowercalculationsbasedonthepastroundsoftheTanzaniaNationalPanelSurvey(TZNPS)andtheHouseholdBudgetSurvey(HBS),theexperimentspanned143enumerationareas(EAs)acrossMainlandTanzaniaandZanzibar,includingbothurbanandruralareas.IneachsampledEA,25householdswereselectedatrandomfromafreshhouseholdlistingthatwasconducted,outofwhichfivesampledhouseholdswere
assignedatrandomtooneoffivesurveytreatmentarms.
Weanalyzethreesurveytreatmentarmsthataremostrelevantforourstudy.
3
TreatmentArm1(TA1)administeredthestandardTZNPShouseholdquestionnairethatprovidesobservedconsumptionandpovertyestimatesandthatpermitstheestimationofallimputationmodelspresentedinDangetal.(forthcoming),whoseTanzania-specificportionsoftheresearchreliedonthedatafromthepreviousroundsoftheTZNPS.TableA.1inAppendixAshowseachofthe
modelsandtheirpredictors.TheTA1sampleconsistsof711households.
TreatmentArm2(TA2)administeredalightquestionnairethatincludes:
(1)“Coremodules”thatonlyincludethequestionsnecessaryforcomputingthepredictorsfor
adata-modestsubsetofmodelsthatarepresentedinDangetal.(forthcoming)-specifically
3Thetwoadditionaltreatmentarmsthatarenotdiscussed/usedinthispaperwere(a)thesamplethatwassubjecttoa14-daydiaryfordatacollectiononfoodconsumption,followingtheHBS2017/18methodology,andotherwiseidenticalnon-foodconsumptionexpendituremodulesvis-à-visT1;and(b)thesamplethatwassubjecttoamodifiedversionofT1questionnaire,specificallywithafoodconsumptionmodulethatwassetuptobealignedwiththeT1/TZNPSfoodconsumptionmodulebutwiththeHBSfooditemlist.
8
Models1,2,8and9,whichrequirepredictorsrelatedtohouseholddemographics,
employmentattributes,housingcharacteristics,assets,utilityexpenditures,and
(2)AshorterversionoftheTA1foodconsumptionmodule-withanidenticalset-up/setofquestionsbutwithareducedlistoffooditems–alignedwiththeearlierSurveyofHouseholdWelfareandLabourinTanzania(SHWALITA)andspecificallythe“shortlist”
treatmentarminthatstudy.
4
TheTA2foodconsumptionmoduleisslottedimmediatelyaftertheTA2coremodules,covering26itemsoutofthe71itemsincludedinTA1.
5
Theseselecteditemsaccountfor69percentofthemonetaryvalueoffoodconsumptioninTA1,indicatingthatthereducedlistoffoodconsumptionitemsunderTA2missesoutonaconsiderableshareofthefoodexpenditurecomparedtothefullTA1foodconsumptionmodule.Asdiscussedlater,TA2dataonfoodconsumptionareusedtoestimateanadditionalimputationmodel,namelyModel3aspresentedinDangetal.(forthcoming),whichincludeshouseholdfoodconsumptionexpendituresasapredictor.TheTA2sampleconsistsof701households.TableA.2inAppendixApresentsexpendituresonthese
foodcategoriesforTA2andTA3incomparisonwiththosefromTA1.
Finally,TreatmentArm3(TA3)administeredanalternativelightquestionnairevariantthat
includes:
(1)ThesameTA2coremodulesthatallowfortheestimationofModels1,2,8,and9as
presentedinDangetal.(forthcoming),
4FormoreinformationregardingSHWALITA,pleaseseeBeegleetal.(2012)andvisit
https://www.uantwerpen.be/en/staff/joachim-deweerdt/public-data-sets/shwalita/#introduction.
5TA2covers13individualfooditemsand4itemcategoriescorrespondingto13itemsonTA1.The13individualitemsinclude:rice(husked);maize(grain);maize(flour);milletandsorghum(flour);cassavafresh;cassavadry/flour;sweetpotatoes;cookingbananasandplantains;sugar;beefincludingmincedsausage;dried/salted/cannedfishandseafood;freshmilk;cookingoil.The4groupeditemcategories(covering13itemsinTA1)include:peas,beans,lentils,andotherpulses;Onions,tomatoes,carrots,andgreenpeppers;Spinach,cabbage,andothergreenvegetables;andFreshfishandseafood.
9
(2)Anaggregatedfoodconsumptionmodulethatcorrespondstothe“collapsedlist”treatment
armintheSHWALITAstudy,and
(3)Aseriesofshort,aggregatednon-foodconsumptionexpendituremodulesthatwereinformedbythevariantsfromtheSHWALITAstudybutwererefinedinsomeinstancestobetteralignwiththeCOICOPcategories(UnitedNations,2018),related,forinstance,
toeducation,health,andutilitiesexpenditures.
TheTA3collapsedfoodconsumptionmoduleisslottedimmediatelyafterthecoremodules,coveringall12broadfoodcategories(includingalcoholicbeverages),andonlyaskingtherespondenttostatethemonetaryvaluethattheconsumedquantityoftotalfoodinthatcategorywouldhavecost,haditbeenpurchased.
6
TA3non-foodconsumptionexpendituremodulesarethenslottedimmediatelyaftertheTA3collapsedfoodconsumptionmodule,andtogether,thesesetsofmodulespermittheestimationofModels3and4aspresentedinDangetal.(forthcoming).
TheTA3sampleconsistsof698households.
ThesedataareinturncomplementedwiththedatafromthenationallyrepresentativeTZNPS2020/21and2019/20rounds,whichareusedasbasesurveystoestimatetheimputationmodelsthatareinturnappliedtoeachtreatmentarm.Themainresultsarebasedonthe2020/21round,whileAppendixAincludesconsistentfindingsbasedonthe2019/20round,asdiscussedbelow.TheTZNPSisamulti-topic,nationallyrepresentativelongitudinalhouseholdsurveythathasbeenimplementedbytheNBSsince2008,withfinancialandtechnicalsupportfromtheWorldBankLivingStandardsMeasurementStudy–IntegratedSurveysonAgriculture(LSMS-ISA)project.
ThequestionsforthepovertypredictorsrequiredfortheestimationofModels1,2,8and9are
6TA3covers:cerealsandcerealproducts;starches;sugarandsweets;pulses,dry;nutsandseeds;vegetables;fruits;meat,meatproducts,fish;milkandmilkproducts;oilandfats;spicesandotherfoods;alcoholicandnon-alcoholicbeverages.
10
identicalacrosstheconsumptionexperimentaswellastheTZNPS020/21and2019/20rounds.Thesamplesizeswere4,644in2020/21(followingupwithapanelsamplethatwasfirstinterviewedduringthe2014/15round)and1,179householdsin2019/20(followingupwithasubsetofanolderpanelsamplethathadbeeninterviewedaspartoftheTZNPS2008/09,2010/11and2012/13).Asdiscussedabove,therearedifferencesintermsoffoodandnon-foodconsumptionmodulesthatwereintroducedinTA2andTA3tounderstandthepotentialforusing
lighterversionofthesemodulestoobtainaccuratepovertypredictions.
Finally,inTA1andtheTZNPS2020/21and2019/20rounds,thetotalconsumptionistakentobethesumoffood(consumedatandawayfromhome)andnon-foodconsumption(health,education,utilities,furnishingandhouseholdexpenses,transport,communication,retreats,andother).Weprovidemoredetaileddiscussiononthefoodandnon-foodconsumptionexpenditure
aggregatesfortheTZNPSsandthethreeTAsinAppendixB.
2.2.Descriptivestatistics
Wespatiallyandinter-temporallydeflatealltheconsumptionaggregatesinthethreeTAsandtheTZNPSs.ThespatialandtemporalpricedifferencesinnominalhouseholdconsumptionexpenditureswithinallsurveyroundsarecorrectedusingFisherpriceindices.Thesepriceindicesareestimatedwithineachsurveyroundbystratumandquarter(ormonth,inthecaseofthe
experiment),andthebaseperiodineachestimationcomprisestheentireperiodofeachround.
Theacross-surveyintertemporaldeflationisinturnconductedusingtheannualinflationseriesforvariousconsumptiongroups,asobtainedfromtheWorldBankGlobalDatabaseofInflation
(Haetal.2023).
7
Specifically,foodexpenditureisdeflatedusingtheconsumerpriceinflationfor
7Toaccessthedatabase,visit:
/en/research/brief/inflation-database.
11
foodandnon-alcoholicbeverages,whileutilitiesexpenditureisdeflatedusingtheconsumerpriceinflationforenergy(capturinghousing,water,electricity,gasandotherfuels).Remainingnon-foodconsumptionexpenditureisdeflatedusingtheheadlineaverageconsumerpriceinflation.The
year2022isusedasthebaseyear.
Hence,theconsumptionexpendituresasmeasuredinourexperimentin2022aretakenintheirnominalvalues,whiletheexpendituresinpreviousroundsaredeflated.TheexpenditurevalueselicitedduringtheTZNPS2020/21,conductedbetweenDecember2020andJanuary2022,aredeflatedinaccordancewiththe2021-2022inflation.Similarly,theexpenditurevalueselicitedduringtheTZNPS2019/20,conductedbetweenJanuary2019andJanuary2020,aredeflatedinaccordancewiththe2020-2022inflation.Inwhatfollows,allexpendituresarereportedinyear-2022Tanzanianshillings(TSH),andtotalannualconsumptionperadultequivalentiscompared
totheTZNPS2020/21povertylinedeflatedtopricesin2022.
Table1providesdescriptivestatisticsforTZNPS2020/21,2019/20roundsandforeachofthesurveytreatmentarms,coupledwiththeresultsfromthetestsofmeandifferencesamongtheTAs.The“good”newsisthatacrosstreatments,comparisonsoftheprospectivepovertypredictorsthatarerequiredforModels1,2,8and9largelydonotrevealstatisticallysignificantdifferences.Theonlyexceptionsareparticipationinwagework,andbicycleownership,betweenTA1andTA2;radioownership,urban–ruralresidenceandutilityexpenditures(thoughwithmarginaldifferences)betweenTA2andTA3;andaccesstopipedwater,betweenTA1andTA3.Thesefindingsare
instarkcontrastwiththoseofKilicandSohnesen(2019)
8
anddonotraiseflagsregardingthe
8KilicandSohnesen(2019)reportonarandomizedsurveyexperimentthatwasconductedinMalawiin2016andthatshowsthatobservationallyequivalent,aswellasidentical,householdsinfactanswerthesamequestionsdifferentlydependingonwhethertheyareinterviewedwithashortquestionnaireoritslongercounterpart.Theauthorsfindlargeandstatisticallysignificantdifferencesinreportingacrossarangeoftopicsandquestiontypes,whichcanleadtoadifferenceof3to7percentagepointsinpredictedpovertyestimates,dependingontheimputationmodel.Theauthors,however,demonstratethattheimputationmodelusingonlythepredictorsthatareelicitedpriortothe
12
sensitivityofmeasurementtothedifferencesinlengthandcomplexitybetweenthebasesurveyandtargetsurveyquestionnairedesign,providedthattheidenticalquestionsareutilizedacrossthesurveys.Itisthusreasonablethatchangesinthedistributionsofthepredictorvariablesovertimeforthesefourmodelscancapturethechangeinthepovertyratebetweentherounds(i.e.,satisfying
Assumption2inourimputationframeworkdiscussedinthenextsection).
Ontheotherhand,Table1alsoshow
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO/IEC 18670:2025 EN Information technology - SoftWare Hash IDentifier (SWHID) Specification V1.2
- 2025年音樂(lè)理論考試卷及答案
- 2025年體育教育專業(yè)考試卷及答案
- 2025年公共管理與城市發(fā)展研究生入學(xué)考試試卷及答案
- 2025年電氣工程師考試卷及答案
- 2025年環(huán)境法與政策知識(shí)考試試卷及答案
- 癌癥防治題庫(kù)及答案
- 旅游合同和旅游協(xié)議書
- 2025年電子游戲、游藝廳娛樂(lè)服務(wù)合作協(xié)議書
- 2025年臥式加工中心合作協(xié)議書
- GB/T 32662-2016廢橡膠廢塑料裂解油化成套生產(chǎn)裝備
- GB/T 24675.2-2009保護(hù)性耕作機(jī)械深松機(jī)
- GB/T 224-2008鋼的脫碳層深度測(cè)定法
- GB/T 18400.4-2010加工中心檢驗(yàn)條件第4部分:線性和回轉(zhuǎn)軸線的定位精度和重復(fù)定位精度檢驗(yàn)
- 危險(xiǎn)化學(xué)品MSDS(硫酸鈉(非?;罚?/a>
- 無(wú)人機(jī)結(jié)構(gòu)與系統(tǒng)-第1章-無(wú)人機(jī)結(jié)構(gòu)與飛行原理課件
- 2023年STD溫鹽深剖面儀行業(yè)分析報(bào)告及未來(lái)五至十年行業(yè)發(fā)展報(bào)告
- 護(hù)理管理中的組織溝通課件
- 公安機(jī)關(guān)人民警察基本級(jí)執(zhí)法資格考試題庫(kù)及答案
- 泌尿系結(jié)石課件
- DB34-T 4016-2021 健康體檢機(jī)構(gòu) 建設(shè)和管理規(guī)范-高清現(xiàn)行
評(píng)論
0/150
提交評(píng)論