版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
UnitedStatesGovernmentAccountabilityOfficeReporttoCongressionalAddressees
March2023
GAO-23-105583
TECHNOLOGYASSESSMENT
Utility-ScaleEnergyStorage
TechnologiesandChallengesforanEvolvingGrid
Thecoverimagedisplaysimagesofagas-poweredturbineforelectricitygeneration,andpumpedhydroelectric,flywheel,andbatteryenergystoragetechnologies.
Coversources:GAO(illustration);contributor_aerial/Regan/malp/filins/(photoslefttoright).|GAO-23-105583
Highlightsof
GAO-23-105583,
areporttocongressionaladdressees
March2023
WhyGAOdidthisstudy
TheU.S.electricitygridconnectsmorethan11,000powerplantswitharound158millionresidential,commercial,andotherconsumers.Energystoragetechnologieshavethepotentialtoenableseveralimprovementstothegrid,suchasreducingcostsandimprovingreliability.Theycouldalsoenablethegrowthofsolarandwindenergygeneration.
GAOconductedatechnologyassessmenton(1)technologiesthatcouldbeusedtocaptureenergyforlaterusewithintheelectricitygrid,
(2)challengesthatcouldimpactenergystoragetechnologiesandtheiruseonthegrid,and(3)policyoptionsthatcouldhelpaddressenergystoragechallenges.
Toaddresstheseobjectives,GAOreviewedagencydocumentsandotherliterature;interviewedgovernment,industry,academic,andpowercompanyrepresentatives;conductedsitevisits;andconvenedavirtualmeetingofexpertsincollaborationwiththeNationalAcademiesofSciences,Engineering,andMedicine.GAOisidentifyingpolicyoptionsinthisreport(seep.2).
View
GAO-23-105583.
Formoreinformation,contactBrianBothwellat(202)512-6888,
bothwellb@.
TECHNOLOGYASSESSMENT
Utility-ScaleEnergyStorage
TechnologiesandChallengesforanEvolvingGrid
WhatGAOfound
Technologiestostoreenergyattheutility-scalecouldhelpimprovegridreliability,reducecosts,andpromotetheincreasedadoptionofvariablerenewableenergysourcessuchassolarandwind.Energystoragetechnologyusehasincreasedalongwithsolarandwindenergy.SeveralstoragetechnologiesareinuseontheU.S.grid,includingpumpedhydroelectricstorage,batteries,compressedair,andflywheels(seefigure).Pumpedhydroelectricandcompressedairenergystoragecanbeusedtostoreexcessenergyforapplicationsrequiring10ormorehoursofstorage.
Lithium-ionbatteriesandflywheelsareusedforshorter-durationapplicationssuchaskeepingthegridstablebyquicklyabsorbingordischargingelectricitytomatchdemand.Flowbatteriesrepresentasmallfractionoftotalenergystoragecapacityandcouldbeusedforapplicationsrequiring10ormorehoursofstorage.Metal-airbatteriesarebeingevaluatedforapplicationsrequiring10ormorehoursofstorage.
PumpedHydroelectric(left)andLithium-IonBattery(right)EnergyStorageTechnologies
Energystoragetechnologiesfacemultiplechallenges,including:
Planning.Planningisneededtointegratestoragetechnologieswiththeexistinggrid.However,accurateprojectionsofeachtechnology’scostsandbenefitscouldbedifficulttoquantify.Further,refinementofcosts,benefits,andotherdataareneededtoinformtheplanningprocess.
Regulation.Rulesandregulationsvaryacrossregionsandstates,whichforcesenergystorageprojectdeveloperstonavigateapatchworkofpotentialmarkets.Developersthatwanttodeploystorageacrossmultiplemarketsmayneedtoconductseparateanalysestodetermineeachregion’sregulatoryoutlookandprofitpotential.
Standardization.Codesandstandardsmayneedrevisingandmustkeeppacewithmaturingtechnologiestominimizepublicsafetyandwelfarerisks.However,thetechnology’sevolutionanddeploymentisoutpacingcodesandstandardsdevelopment.Asaresult,entitiesseekingtodeploynewtechnologiesmayfacechallengesapplyingexistingcodesandstandardstonewtechnologies.
Valuation.Realizingthepotentialofenergystoragetechnologiesmaydependontheabilitytovalueinvestments.Forexample,profitpotentialcanvarybecauseregionsandstatesvaluestoragedifferently,reflectinglocalmarketrulesandregulations.
UnitedStatesGovernmentAccountabilityOffice
UnitedStatesGovernmentAccountabilityOffice
GAOdevelopedsixhigh-levelpolicyoptionsinresponsetothesechallenges.Thesepolicyoptionsareprovidedtoinformpolicymakersofpotentialactionstoaddressthepolicychallengesidentifiedinthistechnologyassessment.Theyidentifypossibleactionsbypolicymakers,whichincludeCongress,federalagencies,stateandlocalgovernments,academicandresearchinstitutions,andindustry.Thestatusquooptionillustratesascenarioinwhichpolicymakersdonotintervenewithongoingefforts.
PolicyOptionstoAddressChallengestoUtility-ScaleEnergyStorage
Policyoptionsandimplementationapproaches
Opportunities
Considerations
Statusquo(reportp.
48
)
Policymakerscouldmaintainthestatusquothrough:
Taxcreditsandfunding
Researchanddevelopment
Previousplansandprogramsbystateswouldcontinue,includingactionsforenergystorage.
Thefederalgovernmenthasvariousnationalcapabilitiestosupportenergystoragetechnologyincentivesanddemonstration.
DOEsupportforstorageresearchanddevelopmentwouldcontinue.
Somepolicymakersmaylacksufficientinformationtomakedecisionsonevolvingstoragecapabilities.
Storagedevelopment,deployment,andusecouldbeleftdependentonforcesoutsidepolicymakers’control.
Integration(reportp.
50
)
Policymakerscouldincludecleargoalsandnextstepsinplanstohelpintegratestorage,by:
Establishingroadmaps,basedonstoragecostsandbenefits
Assessingstorageinplans
Storageplanningcouldhelppolicymakersidentifyandremovebarrierstoenergystoragedeployment.
Planscouldincreaseinvestors’confidenceandhelpthemdeterminestorageinvestments.
Plansthatseektoalterconventionalgridplanningcouldbedifficulttoexecute.
Stakeholdershavesetdifferentgoalsforlow-carbonelectricgeneration.
Planningdependsonfactorssuchaslocationsuitability;noteverytechnologyissuitedforeverylocation.
Regulation(reportp.
52
)
Policymakerscouldreviseandenactrulesandrequirementsforhowstorageisdefined,used,orownedby:
Identifyingmarketbarriers
Establishingtargetsormandates
Modernizingownershipmodels
Couldpromoteenergystoragetechnologiesbyimprovinggridefficiencywhilereducingcostsforallcustomers.
Couldhelplowercostsandreducethetimelineforinterconnection.
Couldacceleratepermitapprovaltimelines.
Regulationsdifferacrossstates,whichcouldmakefindingtherightregulatorymodeltoachieveenergygoalsachallenge.
Integratingnewtechnologieswithconventionalgridplanningcanbechallenging.
Changestorulesandregulationscouldexcludecertaintechnologies.
Standardization(reportp.
54
)Policymakerscouldupdateorcreatenewcodesandstandardsandprovideeducationonstoragesafetyrisks.
Couldhelpstakeholdersoperatestoragesystemsmoresafely.
Standardsplacedintoregulations
couldhelpaddressstorageperformancerequirements.
Codesandstandardstaketimetodevelopandcouldbeoutdatedifnotadoptedinatimelymanner.
Standardsmaybeambiguous,whichcouldmakeitdifficulttodesignstoragesystems.
Supportmanufacturingandadoption(reportp.
56
)Policymakerscouldsupportactionstohelpenergystoragemanufacturingandadoptionchallengesby:
Enactingbatteryreuseandrecyclingpolicies
Conductingoutreach
Targetingactivitiestosupportstoragedevelopmentanddeployment
Reuseandrecyclingpoliciescouldincreasetherecoveryofproductsandmaterials.
Stakeholderoutreachandinformationalprogramscouldhelpovercomeawarenessandfamiliaritychallenges.
Federalandstatefinancialsupportforlonger-durationenergystoragedevelopmentanddemonstrationcouldbeimportantinafutureelectricitysystempoweredbywindandsolargeneration.
Incentivesandmotivationtoinvestinnewrecyclingapplicationsislimited.
Fundingmayfluctuateyeartoyearorfavorshort-termprojects.
Developmentofnewsystemscouldbedifficultbecauseofengineeringandeconomicuncertainty,particularlyforlonger-durationstorage.
Low-cost,flexiblenaturalgasgenerationcouldmakeitmoredifficultfornewpumpedhydroelectricfacilitiestocompete.
Provideincentives(reportp.
58
)Policymakerscouldcreatemechanismstoincentivizestoragedeployment,by:
Providingincentives,suchasloanguaranteesortaxcredits
Consideringpoliciestoencouragethecaptureofmultiplerevenuestreams
Financialincentivescouldhelpdevelopersandcompaniesdevelopstoragetechnologies.
Technologieswithlongerdurationsmaybenefitfrompoliciesthathelpindustrytocapturetheirfullvalue.
Incentivescouldleadtounintendedoutcomesforgovernmentsordevelopers,andsomestakeholdersmaynotbelievetheyarenecessary.
Technologyvaluevariesbyregion,whichmayaffectstorageincentives,valuation,andrevenuestreams.
Environmentalandsocialcostsandbenefitscouldbedifficulttoquantify.
Source:GAO.|GAO-23-105583
ThisisaworkoftheU.S.governmentandisnotsubjecttocopyrightprotectionintheUnitedStates.ThepublishedproductmaybereproducedanddistributedinitsentiretywithoutfurtherpermissionfromGAO.However,becausethisworkmaycontaincopyrightedimagesorothermaterial,permissionfromthecopyrightholdermaybenecessaryifyouwishtoreproducethismaterialseparately.
Utility-ScaleEnergyStorageGAO-23-105583
PAGE\*roman
iii
TableofContents
Introduction 1
Background 3
Howdoesthegridwork? 3
Whatisenergystorage? 9
Whyenergystorage? 10
Historyofenergystoragetechnologies 12
Factorsaffectingeconomicviability 13
Legalandregulatoryconsiderations 15
Utility-ScaleEnergyStorageTechnologies 18
Multiplestoragetechnologiesareavailable 18
Differentenergystoragedurationshavedifferentusesonthegrid 35
SeveralChallengesMayHinderEnergyStorageTechnologyDevelopmentandUse 39
Planningforstoragetechnologies 39
Challengingregulatoryenvironment 42
Existingcodesandstandardsdonotfullyaddressenergystoragetechnologies 43
Crosscuttingchallenges 44
Valuingenergystorage 46
PolicyOptionstoAddressEnergyStorageTechnologyChallenges 48
Statusquo 48
Integratingstoragetechnologies 50
Revisingandenactingrulesandrequirements 52
Updatingorcreatingcodesandstandards 54
Addressingcrosscuttingchallenges 56
Incentivizingenergystorage 58
AgencyandExpertComments 61
AppendixI:Objectives,Scope,andMethodology 63
AppendixII:ExpertParticipation 68
AppendixIII:GAOContactsandStaffAcknowledgments 69
Figures
Figure1:Theelectricitygrid 4
Figure2:Exampledepictingelectricitystystemload
5
Figure3:U.S.electricpowermarketsandinterconnections 7
Figure4:Independentsystemopertorsandregionaltransmissionorganizations
8
Figure5:Selectedenergystoragetechnologyperformancecharacteristics 9
Figure6:Examplesofenergystorageapplicationsontheelectricitygrid
11
Figure7:Hypotheticalexampleofcurtailedwindenergyonagrid
usingsimulateddata 11
Figure8:Totalinstalledcosts(energycapacity)oflarge-scalebatterystorage
systemsfrom2015-2019
13
Figure9:Percentofutility-scaleenergystorageinoperationbytechnologytype 19
Figure10:Simplifiedinterconnectionstudyprocess
41
Figure11:Examplesofstateenergystorageefforts 51
Abbreviations
DOE
DepartmentofEnergy
EIA
EnergyInformationAdministration
FERC
FederalEnergyRegulatoryCommission
ISO
IndependentSystemOperator
MW
Megawatt
NationalAcademies
NationalAcademiesofSciences,Engineering,andMedicine
NERC
NorthAmericanElectricReliabilityCorporation
RTO
RegionalTransmissionOrganization
Utility-ScaleEnergyStorageGAO-18-3071
441GSt.N.W.
Washington,DC20548
March30,2023CongressionalAddressees
Energystoragetechnologies—suchasbatteries,flywheels,compressedair,andpumpedhydroelectricpower—haveseveralpotentialbenefits.
1
Forexample,theabilitytostoreenergy—especiallyforseveralhoursorlonger—couldreducecosts,increasetheelectricitygrid’sreliability,andimproveitsabilitytorecoverfromdisruptions.Storagetechnologiescouldalsopromoteincreasedadoptionofrenewableenergysourcessuchassolarandwindbycapturingtheirexcesspowerandreturningittothegridwhenthesesourcesarelessavailable.However,energystorage,alongwithrenewableenergygeneration,mayrequirechangesinthewaythepowersystemisorganizedandoperated.
2
Thefederalgovernmenthastakenseveralstepstoexploreorpromoteenergystoragetechnologies.Forexample,in2021theInfrastructureInvestmentandJobsActappropriated
$505milliontotheDepartmentofEnergy(DOE)forenergystoragedemonstrationprojectsforfiscalyears2022to2025.
3
TheactalsorequiredDOEtostudycodesandstandardsforenergystoragesystemsandestablishagrantprogramtoenhanceU.S.batterymanufacturing.Further,theInflationReductionActof2022createdandexpandedtaxcreditsforinvestmentinenergystoragetechnology.
4
Withintheexecutivebranch,theFederalEnergyRegulatoryCommission(FERC)issuedordersin2018and2019toremovebarrierstomarketparticipationforenergystoragetechnologies.
WepreparedthisreportundertheauthorityoftheComptrollerGeneraltoassistCongresswithitsoversightresponsibilities,inlightofbroadcongressionalinterestinutility-scaleenergystoragetechnologies.
5
Weexamined(1)technologiesthatcouldbeusedtocaptureenergyforlaterusewithintheelectricitygrid,(2)challengesthatcouldimpactenergystoragetechnologies
1
Forthepurposesofthisreport,wediscusspumpedhydroelectricstorage;lithiumion,andotherbatterytechnologies;compressedairenergystorage;andflywheelsasexamplesofenergystoragetechnologies.Wedonotdiscussconcentratedsolarthermalenergyforthisreport,becauseitcannottakeenergyfromthegrid,orhydrogen,becauseitwasnotsufficientlywellestablishedduringourreview.
2
Energystoragetechnologiesaresystemsthatarecapableofreceivingelectricenergyfromthegridandstoringitforlaterinjectionofelectricenergybacktothegrid.
3
Pub.L.No.117-58,135Stat.429(2021).
4
Pub.L.No.117-169,§13102,136Stat.1818,1913-21.
5
Forthepurposesofthisreport,wearedefiningutility-scaleassystemsthathaveatleast1megawatt(MW)ofoutput,arelocatedinacentralizedlocation,andareontheutility’ssideofthemeter.
Utility-ScaleEnergyStorageGAO-23-105583
PAGE
10
andtheiruseonthegrid,and(3)policyoptionsthatcouldhelpaddressenergystoragechallenges.
Wefocusedthistechnologyassessmentonutility-scaleenergystoragesystems,selectingpumpedhydroelectricstorage,batteries,compressedairenergystorage,andflywheelsasexampletechnologies.Wedonotdiscussconcentratedsolarthermalenergyinthisreportbecauseitcannottakeenergyfromthegrid,andhydrogenbecauseitwasnotsufficientlyestablishedduringourreview.Wereviewedagencydocumentsandotherliterature;interviewedagencyofficials,expertsandstakeholdersfromindustry,andpowercompanies,amongothers;conductedsitevisits;andheldavirtualmeetingofexperts.Themeetingincludedanon-generalizablesampleof15expertsselectedbasedontheirtechnical,economic,regulatory,operational,orpolicyexpertise.SeeappendixIforadetaileddescriptionofourobjectives,scope,andmethodology.
WeconductedourworkfromDecember2021toMarch2023inaccordancewithallsectionsofGAO’sQualityAssuranceFrameworkthatarerelevanttotechnologyassessments.Theframeworkrequiresthatweplanandperformtheengagementtoobtainsufficientandappropriateevidencetomeetourstatedobjectivesandtodiscussanylimitationstoourwork.Webelievethattheinformationanddataobtained,andtheanalysisconducted,provideareasonablebasisforanyfindingsandconclusionsinthisproduct.
Background
Howdoesthegridwork?
Theelectricitygridisamassivefeatofengineering,whichoneauthorcalled“themostcomplexmachineevermade.”
6
IntheU.S.,itconnectsmorethan11,000powerplantswithover158millionresidential,commercial,andothercustomersviamillionsofpowerlines.Ithasfourdistinctfunctions:generation,electricitytransmission,distribution,andgridoperations.
7
Seefigure1
6
Schewe,PhillipF.,Thegrid:ajourneythroughtheheartofourelectrifiedworld(Washington,DC:JosephHenryPress,2007).
forarepresentationofthegrid.Powerplantsgenerateelectricitybyconvertingotherformsofenergy,suchaschemicalenergyfromfuel,mechanicalenergyfromwindorwater,andnuclearenergy.Oncegenerated,electricityisauniformresourcethatisinterchangeablewithelectricityfromanyothersource.Thegridcarriesthiselectricityfirstthroughhigh-voltage,high-capacitytransmissionlines.Theelectricityisthentransformedtoalowervoltageandsentthroughthelocaldistributionlinestohomesandbusinesses.
7
Generationfacilitiesproduceelectricity.Transmissionlinesmoveelectricitybetweenpowerplantsandpointswhereitisdeliveredtocustomersorotherelectricsystems.Distributiondeliversenergytoretailcustomers.
Gridoperatorsmustensurethatelectricitysupplyconstantlymatchespowerdemand.Thisbalancingactrequiresthemtoforecastelectricitydemandandscheduleandoperatepowerplantstomeetdemand,whichvariesbytimeofdayandyear,sinceitisdifficulttoeconomicallystorelargequantitiesofelectricity.Assuch,electricitymustbeproducedtheinstantitisneededandused.Todothis,gridoperatorssendminute-by-minutesignalstopowerplantstoadjust
output.Onekeypatterntheymustfollowistheriseinconsumerelectricitydemandthroughouttheday,inmanyareas,reachingpeakdemandinthelateafternoonorearlyevening.Typically,gridoperatorsuseasteadyflowofelectricityfrombaseloadpowerplants,whichruncontinuouslyandaretheleastexpensivetooperate.Asdemandincreasestoitspeak,operatorsprogressivelyincreasetheelectricitysuppliedbypeakerplants—electricitygeneratorsreservedfor
operationduringthehoursofhighestdaily,weekly,orseasonalelectricityloads—andothergeneratorsthataremoreexpensivetooperatebutcanbequicklybroughtonline(seefig.2).
aPeakinggenerationiselectricityreservedforoperatingduringthehoursofhighestdaily,weekly,orseasonalelectricityloads.
bIntermediateloadgenerationisnormallyoperatedonadailycycletoserveon-peakloadsduringtheday,butnotoff-peakloadsduringnightsandweekends.
cBaseloadgenerationservestheminimumlevelofelectricpowerdemandofaregion,orcustomerrequiredoveragivenperiodoftimeatasteadyrate.
dRenewablesgenerationrepresentsvariablegenerationprimarilyfromwindorsolarsources,whosepeakgenerationdoesnotnecessarilycoincidewithelectricitysystemperiodsofpeakdemand.
Severalfactorshavemadethetaskofmatchingelectricitysupplyanddemandevenmorecomplex.Variableelectricitysourcessuchaswindandsolarpoweraresupplyinganincreasingshareofelectricity,buttheiroutputvarieswiththeweatheranddoesnotalwaysmatchdemand.Further,theincreasinguseofvariableenergyresources,interactionofsuchenergysourceswithtraditionalgenerationsources,andchangingroleofelectricitycustomershaveincreasedthe
complexityofmatchingelectricitysupplywithdemandatalltimes.
Gridoperatorsconductplanningactivitiestodeterminegridinfrastructureadequacy,identifycapacityneeds,andevaluatethecostandeffectivenessofpotentialsolutionstoaddresstheseneeds.Utilitiesdealwithuncertaintypartlybyproducingarangeofforecastsbasedondemographicandeconomicfactors,andbymaintainingexcessgenerationcapacity,knownasreserves.
Additionally,utilitiesusemodelstohelpchoosetheleast-costcombinationofelectricitygeneratingresourcestomeetdemandinordertoreducecosts.Stateregulatorsapproveofutilityinvestmentsbeforefacilitiesarebuiltorwhenutilitiesseektorecovercostsintheratesconsumersarecharged.Further,somestatesuseintegratedresourceplanningprocessestodeterminewhichfacilitiesshouldbebuilt.Thisprocessisintendedtomeetfuturepowerdemandbyidentifyingtheneedforgeneratingcapacityanddeterminingthebestresourcemixtomeetsystemneedsatthelowestcosts.
Theelectricitygridinthelower48statesismadeupofthreemainparts,knownasinterconnections,whichoperatelargelyindependentofeachother,withlimited
powertransfersbetweenthem.
8
Seefigure3formapsofinterconnectionsandU.S.electricpowermarkets.Further,howpowerisboughtandsoldvariesbyregionandthereisamixofregulatorymarketenvironments.Someutilitiesmayoperateunderamixofmarketenvironments.Further,someutilitiesmaybeinvestor-ownedandregulatedbypublicpolicy,whileothersmaybepubliclyownedandregulatedthroughtheirownership,inadditiontomanystateandfederallaws.U.S.utilitiesoperateintraditionallyregulatedandderegulatedmarkets.
Traditionallyregulatedmarkets.Intraditionallyregulatedmarkets,utilitiesaretypicallysolelyresponsiblefor
8
TheWestern,Eastern,andElectricReliabilityCouncilofTexas(ERCOT)interconnectionsconsistofbalancingauthoritieswhichcanbeindependentsystemoperators,regionaltransmissionorganizations,orindividualpowercompanies.
Balancingauthoritieshavebalancingresponsibilitiesforaspecificportionofthepowersystemandensurethatpowersystemsupplyanddemandarebalanced,whichisrequiredtomaintainsafeandreliableoperationofthepowersystem.
generating,transmitting,anddistributingelectricitytotheircustomers.
Deregulatedmarkets.Inderegulatedmarkets,utilitiesthatserveretailcustomerscannotownpowerplants;theyareonlyresponsiblefordeliveringelectricitytocustomers,andforcustomerbilling.
9
Insuchmarkets,electricitygeneratingentitiestypicallyselltheelectricitytheygeneratethroughcompetitivepowermarkets.Independentsystemoperators(ISO)andregionaltransmissionorganizations(RTO),formedinresponsetoFERCorders,aregroupsthatcoordinate,control,andmonitortheelectricgridintheseareas.Seefigure4foramapofISOsandRTOs.
9
Transmissionsystemsarelinesandequipmentthatmoveelectricityfromwhereitissuppliedtowhereitisdeliveredtocustomersorothersystems.
aPJMinterconnectionandSouthwestPowerPoolareRegionalTransmissionOrganizations.
Responsibilityforpowerindustryregulationisdividedamongstatesandthefederalgovernment.Forexample,theFederalPowerActgivesFERCtheresponsibilitytoregulatethetransmissionandwholesalesaleofelectricityininterstatecommerce,andtoensurethattheratesforsuchtransmissionandwholesalesalesarejustandreasonable.
10
Stateentities,suchaspublicutilitycommissions,regulateutilitymanagement,operations,andelectricityratestructures.Insomeregions,ISO’sandRTOsmanageelectricitytransmissionandwholesaleelectricitymarkets.AccordingtotheNational
10
16U.S.C.§§824,824d.
AcademiesofSciences,Engineering,andMedicine(NationalAcademies),thisdividedresponsibilitycontributestomakingitdifficulttomakegeneralizationsaboutmanyaspectsoftheU.S.electricitysystem.
AccordingtoaNationalAcademiesconsensusstudy,itcanbechallengingtodeterminewhoisinchargeofplanning,developing,andensuringfuturepowersystemintegrity.
11
IntheU.S.,nosingleplannerordesignerisresponsiblefortheelectricitysystem.Thegridhasbeendevelopedinanincrementalandpiecemealprocessdrivenbythesometimes
11
NationalAcademiesofSciences,Engineering,andMedicine,TheFutureofElectricPowerintheUnitedStates(Washington,D.C.:NationalAcademiesPress.2021).
divergentinterestsoffederal,state,regional,andlocalauthoritiesoperatingdifferentlyintheirrespectiveareas.Thisincrementalprocesshasshapedhowthegridhasevolved,andaccordingtothisNationalAcademiesstudy,howitwillcontinuetoevolve.
Whatisenergystorage?
Typesofenergystoragetechnologiesincludepumpedhydroelectricstorage,lithium-ionandotherbatterytechnologies,compressedairenergystorage,andflywheels.
12
Thesetechnologieshavedifferentperformancecharacteristicsthatmaymakethemmoresuitableforsomegridservicesthanothers.Forexample,theyhavedifferentroundtripefficiencies,ameasureoftheamountofenergylostwhentheenergystoragesystemchargesanddischarges.Theyalsohavemanydifferentdurationtimes—theamountoftimethatastoragetechnologycanproduceelectricity.Thesedurationsrangefromsecondstohours.Theyalsohavedifferentcapacities,ormaximumamountsofpowerthattheycandischargeontothegrid.
Capacitycanreach1,000megawatts(MW)forpumpedhydroelectricandcompressedairenergystoragesystems.
13
Technologieslikebatteriesandflywheelshavesmallercapacitiesandshorterdischargetimes.Seefigure5forinformationonselectedtechnologypower,themaximumamountofelectricitythatthestoragecanprovide,andduration.
12
Wedonotdiscussconcentratedsolarthermalenergyforthisreportbecauseitcannottakeenergyfromthegrid,andhydrogenbecauseitwasnotsufficientlyestablishedduringourreview.
13
Amegawatt(MW)isaunitofelectricpower.Onegigawattis1,000megawatts.Abatterywith1MWcapacityanda
Note:Becausetechnologycharacteristicsarequicklyevolvingthisfiguremaynotberepresentativeofthefullrangeoftechnologycapabilities.
Thegridwasnotdesignedwithadvancedenergystorageinmind.Energystoragemaybechallengingtointegratewiththeexistinginfrastructurebecauseitmaynotfitintotheexistingpolicyandregulatoryframework.Forexample,itmayactastransmission,electricitydemand,andinfrastructure,alongwithitsabilitytoshift
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025軟件買賣合同范文
- 上海商學院《酒店管理》2023-2024學年第一學期期末試卷
- 2025煤礦機電買賣合同 標準版模板全
- 課題申報書:高校院(系)黨組織政治功能強化的實現(xiàn)路徑研究
- 2022年春季一年級語文學科素養(yǎng)評價期中練習題(pdf版含答案)
- 上海歐華職業(yè)技術學院《音樂學科課程與教學論》2023-2024學年第一學期期末試卷
- 上海歐華職業(yè)技術學院《課件設計含幾何畫板》2023-2024學年第一學期期末試卷
- 上海農林職業(yè)技術學院《化工原理Ⅱ》2023-2024學年第一學期期末試卷
- 上海農林職業(yè)技術學院《財經新聞采編》2023-2024學年第一學期期末試卷
- 古詩三首 公開課一等獎創(chuàng)新教學設計
- [重慶]金佛山景區(qū)蘭花村深度旅游策劃方案
- 數學建模案例分析--線性代數建模案例(20例)
- 市場營銷之4P策略(課堂PPT)
- 中藥材生產管理質量管理文件目錄
- 框架柱+剪力墻工程施工鋼筋綁扎安裝施工過程
- 蘇州預防性試驗、交接試驗費用標準
- 最新【SD高達G世紀-超越世界】各強力機體開發(fā)路線
- 泡沫混凝土安全技術交底
- 完整MAM-KY02S螺桿空壓機控制器MODBUSⅡ通信協(xié)議說明
- 《納米材料工程》教學大綱要點
- 長春市勞動合同樣本(共10頁)
評論
0/150
提交評論