公用事業(yè)規(guī)模能源 貯存_第1頁
公用事業(yè)規(guī)模能源 貯存_第2頁
公用事業(yè)規(guī)模能源 貯存_第3頁
公用事業(yè)規(guī)模能源 貯存_第4頁
公用事業(yè)規(guī)模能源 貯存_第5頁
已閱讀5頁,還剩74頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

UnitedStatesGovernmentAccountabilityOfficeReporttoCongressionalAddressees

March2023

GAO-23-105583

TECHNOLOGYASSESSMENT

Utility-ScaleEnergyStorage

TechnologiesandChallengesforanEvolvingGrid

Thecoverimagedisplaysimagesofagas-poweredturbineforelectricitygeneration,andpumpedhydroelectric,flywheel,andbatteryenergystoragetechnologies.

Coversources:GAO(illustration);contributor_aerial/Regan/malp/filins/(photoslefttoright).|GAO-23-105583

Highlightsof

GAO-23-105583,

areporttocongressionaladdressees

March2023

WhyGAOdidthisstudy

TheU.S.electricitygridconnectsmorethan11,000powerplantswitharound158millionresidential,commercial,andotherconsumers.Energystoragetechnologieshavethepotentialtoenableseveralimprovementstothegrid,suchasreducingcostsandimprovingreliability.Theycouldalsoenablethegrowthofsolarandwindenergygeneration.

GAOconductedatechnologyassessmenton(1)technologiesthatcouldbeusedtocaptureenergyforlaterusewithintheelectricitygrid,

(2)challengesthatcouldimpactenergystoragetechnologiesandtheiruseonthegrid,and(3)policyoptionsthatcouldhelpaddressenergystoragechallenges.

Toaddresstheseobjectives,GAOreviewedagencydocumentsandotherliterature;interviewedgovernment,industry,academic,andpowercompanyrepresentatives;conductedsitevisits;andconvenedavirtualmeetingofexpertsincollaborationwiththeNationalAcademiesofSciences,Engineering,andMedicine.GAOisidentifyingpolicyoptionsinthisreport(seep.2).

View

GAO-23-105583.

Formoreinformation,contactBrianBothwellat(202)512-6888,

bothwellb@.

TECHNOLOGYASSESSMENT

Utility-ScaleEnergyStorage

TechnologiesandChallengesforanEvolvingGrid

WhatGAOfound

Technologiestostoreenergyattheutility-scalecouldhelpimprovegridreliability,reducecosts,andpromotetheincreasedadoptionofvariablerenewableenergysourcessuchassolarandwind.Energystoragetechnologyusehasincreasedalongwithsolarandwindenergy.SeveralstoragetechnologiesareinuseontheU.S.grid,includingpumpedhydroelectricstorage,batteries,compressedair,andflywheels(seefigure).Pumpedhydroelectricandcompressedairenergystoragecanbeusedtostoreexcessenergyforapplicationsrequiring10ormorehoursofstorage.

Lithium-ionbatteriesandflywheelsareusedforshorter-durationapplicationssuchaskeepingthegridstablebyquicklyabsorbingordischargingelectricitytomatchdemand.Flowbatteriesrepresentasmallfractionoftotalenergystoragecapacityandcouldbeusedforapplicationsrequiring10ormorehoursofstorage.Metal-airbatteriesarebeingevaluatedforapplicationsrequiring10ormorehoursofstorage.

PumpedHydroelectric(left)andLithium-IonBattery(right)EnergyStorageTechnologies

Energystoragetechnologiesfacemultiplechallenges,including:

Planning.Planningisneededtointegratestoragetechnologieswiththeexistinggrid.However,accurateprojectionsofeachtechnology’scostsandbenefitscouldbedifficulttoquantify.Further,refinementofcosts,benefits,andotherdataareneededtoinformtheplanningprocess.

Regulation.Rulesandregulationsvaryacrossregionsandstates,whichforcesenergystorageprojectdeveloperstonavigateapatchworkofpotentialmarkets.Developersthatwanttodeploystorageacrossmultiplemarketsmayneedtoconductseparateanalysestodetermineeachregion’sregulatoryoutlookandprofitpotential.

Standardization.Codesandstandardsmayneedrevisingandmustkeeppacewithmaturingtechnologiestominimizepublicsafetyandwelfarerisks.However,thetechnology’sevolutionanddeploymentisoutpacingcodesandstandardsdevelopment.Asaresult,entitiesseekingtodeploynewtechnologiesmayfacechallengesapplyingexistingcodesandstandardstonewtechnologies.

Valuation.Realizingthepotentialofenergystoragetechnologiesmaydependontheabilitytovalueinvestments.Forexample,profitpotentialcanvarybecauseregionsandstatesvaluestoragedifferently,reflectinglocalmarketrulesandregulations.

UnitedStatesGovernmentAccountabilityOffice

UnitedStatesGovernmentAccountabilityOffice

GAOdevelopedsixhigh-levelpolicyoptionsinresponsetothesechallenges.Thesepolicyoptionsareprovidedtoinformpolicymakersofpotentialactionstoaddressthepolicychallengesidentifiedinthistechnologyassessment.Theyidentifypossibleactionsbypolicymakers,whichincludeCongress,federalagencies,stateandlocalgovernments,academicandresearchinstitutions,andindustry.Thestatusquooptionillustratesascenarioinwhichpolicymakersdonotintervenewithongoingefforts.

PolicyOptionstoAddressChallengestoUtility-ScaleEnergyStorage

Policyoptionsandimplementationapproaches

Opportunities

Considerations

Statusquo(reportp.

48

)

Policymakerscouldmaintainthestatusquothrough:

Taxcreditsandfunding

Researchanddevelopment

Previousplansandprogramsbystateswouldcontinue,includingactionsforenergystorage.

Thefederalgovernmenthasvariousnationalcapabilitiestosupportenergystoragetechnologyincentivesanddemonstration.

DOEsupportforstorageresearchanddevelopmentwouldcontinue.

Somepolicymakersmaylacksufficientinformationtomakedecisionsonevolvingstoragecapabilities.

Storagedevelopment,deployment,andusecouldbeleftdependentonforcesoutsidepolicymakers’control.

Integration(reportp.

50

)

Policymakerscouldincludecleargoalsandnextstepsinplanstohelpintegratestorage,by:

Establishingroadmaps,basedonstoragecostsandbenefits

Assessingstorageinplans

Storageplanningcouldhelppolicymakersidentifyandremovebarrierstoenergystoragedeployment.

Planscouldincreaseinvestors’confidenceandhelpthemdeterminestorageinvestments.

Plansthatseektoalterconventionalgridplanningcouldbedifficulttoexecute.

Stakeholdershavesetdifferentgoalsforlow-carbonelectricgeneration.

Planningdependsonfactorssuchaslocationsuitability;noteverytechnologyissuitedforeverylocation.

Regulation(reportp.

52

)

Policymakerscouldreviseandenactrulesandrequirementsforhowstorageisdefined,used,orownedby:

Identifyingmarketbarriers

Establishingtargetsormandates

Modernizingownershipmodels

Couldpromoteenergystoragetechnologiesbyimprovinggridefficiencywhilereducingcostsforallcustomers.

Couldhelplowercostsandreducethetimelineforinterconnection.

Couldacceleratepermitapprovaltimelines.

Regulationsdifferacrossstates,whichcouldmakefindingtherightregulatorymodeltoachieveenergygoalsachallenge.

Integratingnewtechnologieswithconventionalgridplanningcanbechallenging.

Changestorulesandregulationscouldexcludecertaintechnologies.

Standardization(reportp.

54

)Policymakerscouldupdateorcreatenewcodesandstandardsandprovideeducationonstoragesafetyrisks.

Couldhelpstakeholdersoperatestoragesystemsmoresafely.

Standardsplacedintoregulations

couldhelpaddressstorageperformancerequirements.

Codesandstandardstaketimetodevelopandcouldbeoutdatedifnotadoptedinatimelymanner.

Standardsmaybeambiguous,whichcouldmakeitdifficulttodesignstoragesystems.

Supportmanufacturingandadoption(reportp.

56

)Policymakerscouldsupportactionstohelpenergystoragemanufacturingandadoptionchallengesby:

Enactingbatteryreuseandrecyclingpolicies

Conductingoutreach

Targetingactivitiestosupportstoragedevelopmentanddeployment

Reuseandrecyclingpoliciescouldincreasetherecoveryofproductsandmaterials.

Stakeholderoutreachandinformationalprogramscouldhelpovercomeawarenessandfamiliaritychallenges.

Federalandstatefinancialsupportforlonger-durationenergystoragedevelopmentanddemonstrationcouldbeimportantinafutureelectricitysystempoweredbywindandsolargeneration.

Incentivesandmotivationtoinvestinnewrecyclingapplicationsislimited.

Fundingmayfluctuateyeartoyearorfavorshort-termprojects.

Developmentofnewsystemscouldbedifficultbecauseofengineeringandeconomicuncertainty,particularlyforlonger-durationstorage.

Low-cost,flexiblenaturalgasgenerationcouldmakeitmoredifficultfornewpumpedhydroelectricfacilitiestocompete.

Provideincentives(reportp.

58

)Policymakerscouldcreatemechanismstoincentivizestoragedeployment,by:

Providingincentives,suchasloanguaranteesortaxcredits

Consideringpoliciestoencouragethecaptureofmultiplerevenuestreams

Financialincentivescouldhelpdevelopersandcompaniesdevelopstoragetechnologies.

Technologieswithlongerdurationsmaybenefitfrompoliciesthathelpindustrytocapturetheirfullvalue.

Incentivescouldleadtounintendedoutcomesforgovernmentsordevelopers,andsomestakeholdersmaynotbelievetheyarenecessary.

Technologyvaluevariesbyregion,whichmayaffectstorageincentives,valuation,andrevenuestreams.

Environmentalandsocialcostsandbenefitscouldbedifficulttoquantify.

Source:GAO.|GAO-23-105583

ThisisaworkoftheU.S.governmentandisnotsubjecttocopyrightprotectionintheUnitedStates.ThepublishedproductmaybereproducedanddistributedinitsentiretywithoutfurtherpermissionfromGAO.However,becausethisworkmaycontaincopyrightedimagesorothermaterial,permissionfromthecopyrightholdermaybenecessaryifyouwishtoreproducethismaterialseparately.

Utility-ScaleEnergyStorageGAO-23-105583

PAGE\*roman

iii

TableofContents

Introduction 1

Background 3

Howdoesthegridwork? 3

Whatisenergystorage? 9

Whyenergystorage? 10

Historyofenergystoragetechnologies 12

Factorsaffectingeconomicviability 13

Legalandregulatoryconsiderations 15

Utility-ScaleEnergyStorageTechnologies 18

Multiplestoragetechnologiesareavailable 18

Differentenergystoragedurationshavedifferentusesonthegrid 35

SeveralChallengesMayHinderEnergyStorageTechnologyDevelopmentandUse 39

Planningforstoragetechnologies 39

Challengingregulatoryenvironment 42

Existingcodesandstandardsdonotfullyaddressenergystoragetechnologies 43

Crosscuttingchallenges 44

Valuingenergystorage 46

PolicyOptionstoAddressEnergyStorageTechnologyChallenges 48

Statusquo 48

Integratingstoragetechnologies 50

Revisingandenactingrulesandrequirements 52

Updatingorcreatingcodesandstandards 54

Addressingcrosscuttingchallenges 56

Incentivizingenergystorage 58

AgencyandExpertComments 61

AppendixI:Objectives,Scope,andMethodology 63

AppendixII:ExpertParticipation 68

AppendixIII:GAOContactsandStaffAcknowledgments 69

Figures

Figure1:Theelectricitygrid 4

Figure2:Exampledepictingelectricitystystemload

5

Figure3:U.S.electricpowermarketsandinterconnections 7

Figure4:Independentsystemopertorsandregionaltransmissionorganizations

8

Figure5:Selectedenergystoragetechnologyperformancecharacteristics 9

Figure6:Examplesofenergystorageapplicationsontheelectricitygrid

11

Figure7:Hypotheticalexampleofcurtailedwindenergyonagrid

usingsimulateddata 11

Figure8:Totalinstalledcosts(energycapacity)oflarge-scalebatterystorage

systemsfrom2015-2019

13

Figure9:Percentofutility-scaleenergystorageinoperationbytechnologytype 19

Figure10:Simplifiedinterconnectionstudyprocess

41

Figure11:Examplesofstateenergystorageefforts 51

Abbreviations

DOE

DepartmentofEnergy

EIA

EnergyInformationAdministration

FERC

FederalEnergyRegulatoryCommission

ISO

IndependentSystemOperator

MW

Megawatt

NationalAcademies

NationalAcademiesofSciences,Engineering,andMedicine

NERC

NorthAmericanElectricReliabilityCorporation

RTO

RegionalTransmissionOrganization

Utility-ScaleEnergyStorageGAO-18-3071

441GSt.N.W.

Washington,DC20548

March30,2023CongressionalAddressees

Energystoragetechnologies—suchasbatteries,flywheels,compressedair,andpumpedhydroelectricpower—haveseveralpotentialbenefits.

1

Forexample,theabilitytostoreenergy—especiallyforseveralhoursorlonger—couldreducecosts,increasetheelectricitygrid’sreliability,andimproveitsabilitytorecoverfromdisruptions.Storagetechnologiescouldalsopromoteincreasedadoptionofrenewableenergysourcessuchassolarandwindbycapturingtheirexcesspowerandreturningittothegridwhenthesesourcesarelessavailable.However,energystorage,alongwithrenewableenergygeneration,mayrequirechangesinthewaythepowersystemisorganizedandoperated.

2

Thefederalgovernmenthastakenseveralstepstoexploreorpromoteenergystoragetechnologies.Forexample,in2021theInfrastructureInvestmentandJobsActappropriated

$505milliontotheDepartmentofEnergy(DOE)forenergystoragedemonstrationprojectsforfiscalyears2022to2025.

3

TheactalsorequiredDOEtostudycodesandstandardsforenergystoragesystemsandestablishagrantprogramtoenhanceU.S.batterymanufacturing.Further,theInflationReductionActof2022createdandexpandedtaxcreditsforinvestmentinenergystoragetechnology.

4

Withintheexecutivebranch,theFederalEnergyRegulatoryCommission(FERC)issuedordersin2018and2019toremovebarrierstomarketparticipationforenergystoragetechnologies.

WepreparedthisreportundertheauthorityoftheComptrollerGeneraltoassistCongresswithitsoversightresponsibilities,inlightofbroadcongressionalinterestinutility-scaleenergystoragetechnologies.

5

Weexamined(1)technologiesthatcouldbeusedtocaptureenergyforlaterusewithintheelectricitygrid,(2)challengesthatcouldimpactenergystoragetechnologies

1

Forthepurposesofthisreport,wediscusspumpedhydroelectricstorage;lithiumion,andotherbatterytechnologies;compressedairenergystorage;andflywheelsasexamplesofenergystoragetechnologies.Wedonotdiscussconcentratedsolarthermalenergyforthisreport,becauseitcannottakeenergyfromthegrid,orhydrogen,becauseitwasnotsufficientlywellestablishedduringourreview.

2

Energystoragetechnologiesaresystemsthatarecapableofreceivingelectricenergyfromthegridandstoringitforlaterinjectionofelectricenergybacktothegrid.

3

Pub.L.No.117-58,135Stat.429(2021).

4

Pub.L.No.117-169,§13102,136Stat.1818,1913-21.

5

Forthepurposesofthisreport,wearedefiningutility-scaleassystemsthathaveatleast1megawatt(MW)ofoutput,arelocatedinacentralizedlocation,andareontheutility’ssideofthemeter.

Utility-ScaleEnergyStorageGAO-23-105583

PAGE

10

andtheiruseonthegrid,and(3)policyoptionsthatcouldhelpaddressenergystoragechallenges.

Wefocusedthistechnologyassessmentonutility-scaleenergystoragesystems,selectingpumpedhydroelectricstorage,batteries,compressedairenergystorage,andflywheelsasexampletechnologies.Wedonotdiscussconcentratedsolarthermalenergyinthisreportbecauseitcannottakeenergyfromthegrid,andhydrogenbecauseitwasnotsufficientlyestablishedduringourreview.Wereviewedagencydocumentsandotherliterature;interviewedagencyofficials,expertsandstakeholdersfromindustry,andpowercompanies,amongothers;conductedsitevisits;andheldavirtualmeetingofexperts.Themeetingincludedanon-generalizablesampleof15expertsselectedbasedontheirtechnical,economic,regulatory,operational,orpolicyexpertise.SeeappendixIforadetaileddescriptionofourobjectives,scope,andmethodology.

WeconductedourworkfromDecember2021toMarch2023inaccordancewithallsectionsofGAO’sQualityAssuranceFrameworkthatarerelevanttotechnologyassessments.Theframeworkrequiresthatweplanandperformtheengagementtoobtainsufficientandappropriateevidencetomeetourstatedobjectivesandtodiscussanylimitationstoourwork.Webelievethattheinformationanddataobtained,andtheanalysisconducted,provideareasonablebasisforanyfindingsandconclusionsinthisproduct.

Background

Howdoesthegridwork?

Theelectricitygridisamassivefeatofengineering,whichoneauthorcalled“themostcomplexmachineevermade.”

6

IntheU.S.,itconnectsmorethan11,000powerplantswithover158millionresidential,commercial,andothercustomersviamillionsofpowerlines.Ithasfourdistinctfunctions:generation,electricitytransmission,distribution,andgridoperations.

7

Seefigure1

6

Schewe,PhillipF.,Thegrid:ajourneythroughtheheartofourelectrifiedworld(Washington,DC:JosephHenryPress,2007).

forarepresentationofthegrid.Powerplantsgenerateelectricitybyconvertingotherformsofenergy,suchaschemicalenergyfromfuel,mechanicalenergyfromwindorwater,andnuclearenergy.Oncegenerated,electricityisauniformresourcethatisinterchangeablewithelectricityfromanyothersource.Thegridcarriesthiselectricityfirstthroughhigh-voltage,high-capacitytransmissionlines.Theelectricityisthentransformedtoalowervoltageandsentthroughthelocaldistributionlinestohomesandbusinesses.

7

Generationfacilitiesproduceelectricity.Transmissionlinesmoveelectricitybetweenpowerplantsandpointswhereitisdeliveredtocustomersorotherelectricsystems.Distributiondeliversenergytoretailcustomers.

Gridoperatorsmustensurethatelectricitysupplyconstantlymatchespowerdemand.Thisbalancingactrequiresthemtoforecastelectricitydemandandscheduleandoperatepowerplantstomeetdemand,whichvariesbytimeofdayandyear,sinceitisdifficulttoeconomicallystorelargequantitiesofelectricity.Assuch,electricitymustbeproducedtheinstantitisneededandused.Todothis,gridoperatorssendminute-by-minutesignalstopowerplantstoadjust

output.Onekeypatterntheymustfollowistheriseinconsumerelectricitydemandthroughouttheday,inmanyareas,reachingpeakdemandinthelateafternoonorearlyevening.Typically,gridoperatorsuseasteadyflowofelectricityfrombaseloadpowerplants,whichruncontinuouslyandaretheleastexpensivetooperate.Asdemandincreasestoitspeak,operatorsprogressivelyincreasetheelectricitysuppliedbypeakerplants—electricitygeneratorsreservedfor

operationduringthehoursofhighestdaily,weekly,orseasonalelectricityloads—andothergeneratorsthataremoreexpensivetooperatebutcanbequicklybroughtonline(seefig.2).

aPeakinggenerationiselectricityreservedforoperatingduringthehoursofhighestdaily,weekly,orseasonalelectricityloads.

bIntermediateloadgenerationisnormallyoperatedonadailycycletoserveon-peakloadsduringtheday,butnotoff-peakloadsduringnightsandweekends.

cBaseloadgenerationservestheminimumlevelofelectricpowerdemandofaregion,orcustomerrequiredoveragivenperiodoftimeatasteadyrate.

dRenewablesgenerationrepresentsvariablegenerationprimarilyfromwindorsolarsources,whosepeakgenerationdoesnotnecessarilycoincidewithelectricitysystemperiodsofpeakdemand.

Severalfactorshavemadethetaskofmatchingelectricitysupplyanddemandevenmorecomplex.Variableelectricitysourcessuchaswindandsolarpoweraresupplyinganincreasingshareofelectricity,buttheiroutputvarieswiththeweatheranddoesnotalwaysmatchdemand.Further,theincreasinguseofvariableenergyresources,interactionofsuchenergysourceswithtraditionalgenerationsources,andchangingroleofelectricitycustomershaveincreasedthe

complexityofmatchingelectricitysupplywithdemandatalltimes.

Gridoperatorsconductplanningactivitiestodeterminegridinfrastructureadequacy,identifycapacityneeds,andevaluatethecostandeffectivenessofpotentialsolutionstoaddresstheseneeds.Utilitiesdealwithuncertaintypartlybyproducingarangeofforecastsbasedondemographicandeconomicfactors,andbymaintainingexcessgenerationcapacity,knownasreserves.

Additionally,utilitiesusemodelstohelpchoosetheleast-costcombinationofelectricitygeneratingresourcestomeetdemandinordertoreducecosts.Stateregulatorsapproveofutilityinvestmentsbeforefacilitiesarebuiltorwhenutilitiesseektorecovercostsintheratesconsumersarecharged.Further,somestatesuseintegratedresourceplanningprocessestodeterminewhichfacilitiesshouldbebuilt.Thisprocessisintendedtomeetfuturepowerdemandbyidentifyingtheneedforgeneratingcapacityanddeterminingthebestresourcemixtomeetsystemneedsatthelowestcosts.

Theelectricitygridinthelower48statesismadeupofthreemainparts,knownasinterconnections,whichoperatelargelyindependentofeachother,withlimited

powertransfersbetweenthem.

8

Seefigure3formapsofinterconnectionsandU.S.electricpowermarkets.Further,howpowerisboughtandsoldvariesbyregionandthereisamixofregulatorymarketenvironments.Someutilitiesmayoperateunderamixofmarketenvironments.Further,someutilitiesmaybeinvestor-ownedandregulatedbypublicpolicy,whileothersmaybepubliclyownedandregulatedthroughtheirownership,inadditiontomanystateandfederallaws.U.S.utilitiesoperateintraditionallyregulatedandderegulatedmarkets.

Traditionallyregulatedmarkets.Intraditionallyregulatedmarkets,utilitiesaretypicallysolelyresponsiblefor

8

TheWestern,Eastern,andElectricReliabilityCouncilofTexas(ERCOT)interconnectionsconsistofbalancingauthoritieswhichcanbeindependentsystemoperators,regionaltransmissionorganizations,orindividualpowercompanies.

Balancingauthoritieshavebalancingresponsibilitiesforaspecificportionofthepowersystemandensurethatpowersystemsupplyanddemandarebalanced,whichisrequiredtomaintainsafeandreliableoperationofthepowersystem.

generating,transmitting,anddistributingelectricitytotheircustomers.

Deregulatedmarkets.Inderegulatedmarkets,utilitiesthatserveretailcustomerscannotownpowerplants;theyareonlyresponsiblefordeliveringelectricitytocustomers,andforcustomerbilling.

9

Insuchmarkets,electricitygeneratingentitiestypicallyselltheelectricitytheygeneratethroughcompetitivepowermarkets.Independentsystemoperators(ISO)andregionaltransmissionorganizations(RTO),formedinresponsetoFERCorders,aregroupsthatcoordinate,control,andmonitortheelectricgridintheseareas.Seefigure4foramapofISOsandRTOs.

9

Transmissionsystemsarelinesandequipmentthatmoveelectricityfromwhereitissuppliedtowhereitisdeliveredtocustomersorothersystems.

aPJMinterconnectionandSouthwestPowerPoolareRegionalTransmissionOrganizations.

Responsibilityforpowerindustryregulationisdividedamongstatesandthefederalgovernment.Forexample,theFederalPowerActgivesFERCtheresponsibilitytoregulatethetransmissionandwholesalesaleofelectricityininterstatecommerce,andtoensurethattheratesforsuchtransmissionandwholesalesalesarejustandreasonable.

10

Stateentities,suchaspublicutilitycommissions,regulateutilitymanagement,operations,andelectricityratestructures.Insomeregions,ISO’sandRTOsmanageelectricitytransmissionandwholesaleelectricitymarkets.AccordingtotheNational

10

16U.S.C.§§824,824d.

AcademiesofSciences,Engineering,andMedicine(NationalAcademies),thisdividedresponsibilitycontributestomakingitdifficulttomakegeneralizationsaboutmanyaspectsoftheU.S.electricitysystem.

AccordingtoaNationalAcademiesconsensusstudy,itcanbechallengingtodeterminewhoisinchargeofplanning,developing,andensuringfuturepowersystemintegrity.

11

IntheU.S.,nosingleplannerordesignerisresponsiblefortheelectricitysystem.Thegridhasbeendevelopedinanincrementalandpiecemealprocessdrivenbythesometimes

11

NationalAcademiesofSciences,Engineering,andMedicine,TheFutureofElectricPowerintheUnitedStates(Washington,D.C.:NationalAcademiesPress.2021).

divergentinterestsoffederal,state,regional,andlocalauthoritiesoperatingdifferentlyintheirrespectiveareas.Thisincrementalprocesshasshapedhowthegridhasevolved,andaccordingtothisNationalAcademiesstudy,howitwillcontinuetoevolve.

Whatisenergystorage?

Typesofenergystoragetechnologiesincludepumpedhydroelectricstorage,lithium-ionandotherbatterytechnologies,compressedairenergystorage,andflywheels.

12

Thesetechnologieshavedifferentperformancecharacteristicsthatmaymakethemmoresuitableforsomegridservicesthanothers.Forexample,theyhavedifferentroundtripefficiencies,ameasureoftheamountofenergylostwhentheenergystoragesystemchargesanddischarges.Theyalsohavemanydifferentdurationtimes—theamountoftimethatastoragetechnologycanproduceelectricity.Thesedurationsrangefromsecondstohours.Theyalsohavedifferentcapacities,ormaximumamountsofpowerthattheycandischargeontothegrid.

Capacitycanreach1,000megawatts(MW)forpumpedhydroelectricandcompressedairenergystoragesystems.

13

Technologieslikebatteriesandflywheelshavesmallercapacitiesandshorterdischargetimes.Seefigure5forinformationonselectedtechnologypower,themaximumamountofelectricitythatthestoragecanprovide,andduration.

12

Wedonotdiscussconcentratedsolarthermalenergyforthisreportbecauseitcannottakeenergyfromthegrid,andhydrogenbecauseitwasnotsufficientlyestablishedduringourreview.

13

Amegawatt(MW)isaunitofelectricpower.Onegigawattis1,000megawatts.Abatterywith1MWcapacityanda

Note:Becausetechnologycharacteristicsarequicklyevolvingthisfiguremaynotberepresentativeofthefullrangeoftechnologycapabilities.

Thegridwasnotdesignedwithadvancedenergystorageinmind.Energystoragemaybechallengingtointegratewiththeexistinginfrastructurebecauseitmaynotfitintotheexistingpolicyandregulatoryframework.Forexample,itmayactastransmission,electricitydemand,andinfrastructure,alongwithitsabilitytoshift

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論