版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
長竹園一中學2024年八年級下冊數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,點O在ABC內(nèi),且到三邊的距離相等,若∠A=60°,則∠BOC的大小為()A.135° B.120° C.90° D.60°2.在平面直角坐標系中,已知點A(O,1),B(1,2),點P在軸上運動,當點P到A、B兩點的距離之差的絕對值最大時,該點記為點P1,當點P到A、B兩點的距離之和最小時,該點記為點P2,以P1P2為邊長的正方形的面積為A.1 B. C. D.53.某小組5名同學在一周內(nèi)參加家務勞動的時間如下表,關于“勞動時間”的這組數(shù)據(jù),以下說法正確的是().勞動時間(小時)33.244.5人數(shù)1121A.中位數(shù)是4,平均數(shù)是3.74;B.中位數(shù)是4,平均數(shù)是3.75;C.眾數(shù)是4,平均數(shù)是3.75;D.眾數(shù)是2,平均數(shù)是3.8.4.在菱形ABCD中,,點E為AB邊的中點,點P與點A關于DE對稱,連接DP、BP、CP,下列結論:;;;,其中正確的是A. B. C. D.5.若一個函數(shù)中,隨的增大而增大,且,則它的圖象大致是()A. B.C. D.6.圖中的兩個三角形是位似圖形,它們的位似中心是()A.點P B.點DC.點M D.點N7.若點在第四象限,則的取值范圍是()A. B. C. D.8.如圖,在邊長為4的等邊△ABC中,D,E分別為AB,BC的中點,EF⊥AC于點F,G為EF的中點,連接DG,則DG的長為()A.2 B.C. D.19.某醫(yī)藥研究所開發(fā)了一種新藥,在試驗效果時發(fā)現(xiàn),如果成人按規(guī)定劑量服用,服藥后血液中的含藥量逐漸增多,一段時間后達到最大值,接著藥量逐步衰減直至血液中含藥量為0,每毫升血液中含藥量(微克)隨時間(小時)的變化如圖所示,下列說法:(1)2小時血液中含藥量最高,達每毫升6微克.(2)每毫升血液中含藥量不低于4微克的時間持續(xù)達到了6小時.(3)如果一病人下午6:00按規(guī)定劑量服此藥,那么,第二天中午12:00,血液中不再含有該藥,其中正確說法的個數(shù)是()A.0 B.1C.2 D.310.如圖,兩把完全一樣的直尺疊放在一起,重合的部分構成一個四邊形,這個四邊形一定是()A.矩形 B.菱形 C.正方形 D.無法判斷二、填空題(每小題3分,共24分)11.點P在第四象限內(nèi),P到軸的距離是3,到軸的距離是5,那么點P的坐標為.12.如圖是一張直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將△ABC折疊,使點B與點A重合,折痕為DE,則DE=______________cm.13.如圖,在直角坐標系中,正方形OABC頂點B的坐標為(6,6),直線CD交直線OA于點D,直線OE交線段AB于點E,且CD⊥OE,垂足為點F,若圖中陰影部分的面積是正方形OABC的面積的,則△OFC的周長為______.14.分式有意義的條件是______.15.如圖,平行四邊形的周長為,對角線交于點,點是邊的中點,已知,則______.16.如圖,將繞點按逆時針方向旋轉得到,使點落在上,若,則的大小是______°.17.化簡:=__.18.如圖,已知點A是第一象限內(nèi)橫坐標為的一個定點,AC⊥x軸于點M,交直線y=﹣x于點N.若點P是線段ON上的一個動點,∠APB=30°,BA⊥PA,則點P在線段ON上運動時,A點不變,B點隨之運動.求當點P從點O運動到點N時,點B運動的路徑長是_____.三、解答題(共66分)19.(10分)如圖,已知線段a,b,∠α(如圖).(1)以線段a,b為一組鄰邊作平行四邊形,這樣的平行四邊形能作____個.(2)以線段a,b為一組鄰邊,它們的夾角為∠α,作平行四邊形,這樣的平行四邊形能作_____個,作出滿足條件的平行四邊形(要求僅用直尺和圓規(guī),保留作圖痕跡,不寫做法)20.(6分)如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于點F,連接DF.(1)求證:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,試證明四邊形ABCD是菱形;(3)在(2)的條件下,試確定E點的位置,使∠EFD=∠BCD,并說明理由.21.(6分)解方程:(1);(2)(x﹣2)2=2x﹣1.22.(8分)某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數(shù)相同.求甲、乙兩種商品的每件進價;該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?23.(8分)甲、乙兩組同學進行一分鐘引體向上測試,評分標準規(guī)定,做6個以上含6個為合格,做9個以上含9個為優(yōu)秀,兩組同學的測試成績?nèi)缦卤恚撼煽儌€456789甲組人125214乙組人114522現(xiàn)將兩組同學的測試成績繪制成如下不完整的統(tǒng)計圖表:統(tǒng)計量平均數(shù)個中位數(shù)眾數(shù)方差合格率優(yōu)秀率甲組a66乙組b7將條形統(tǒng)計圖補充完整;統(tǒng)計表中的______,______;人說甲組的優(yōu)秀率高于乙組優(yōu)秀率,所以甲組成績比乙組成績好,但也有人說乙組成績比甲組成績好,請你給出兩條支持乙組成績好的理由.24.(8分)計算.(1)(2)25.(10分)如圖,利用一面長18米的墻,用籬笆圍成一個矩形場地ABCD,設AD長為x米,AB長為y米,矩形的面積為S平方米.(1)若籬笆的長為32米,求y與x的函數(shù)關系式,并直接寫出自變量x的取值范圍;(2)在(1)的條件下,求S與x的函數(shù)關系式,并求出使矩形場地的面積為120平方米的圍法.26.(10分)一條筆直跑道上的A,B兩處相距500米,甲從A處,乙從B處,兩人同時相向勻速而跑,直到乙到達A處時停止,且甲的速度比乙大.甲、乙到A處的距離(米)與跑動時間(秒)的函數(shù)關系如圖14所示.(1)若點M的坐標(100,0),求乙從B處跑到A處的過程中與的函數(shù)解析式;(2)若兩人之間的距離不超過200米的時間持續(xù)了40秒.①當時,兩人相距200米,請在圖14中畫出P(,0).保留畫圖痕跡,并寫出畫圖步驟;②請判斷起跑后分鐘,兩人之間的距離能否超過420米,并說明理由.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】
由條件可知O為三角形三個內(nèi)角的角平分線的交點,則可知∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A),在△BOC中利用三角形的內(nèi)角和定理可求得∠BOC.【詳解】∵O到三邊的距離相等∴BO平分∠ABC,CO平分∠ACB∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°?∠A)∵∠A=60°∴∠OBC+∠OCB=60°∴∠BOC=180°?(∠OBC+∠OCB)=180°?60°=120°故選B.【點睛】本題考查了角平分線的性質(zhì),熟練掌握角平分線把一個角分成兩個相等的角是解題的關鍵.2、C【解析】
由三角形兩邊之差小于第三邊可知,當A、B、P三點不共線時,|PA-PB|<AB,又因為A(0,1),B(1,2)兩點都在x軸同側,則當A、B、P三點共線時,|PA-PB|=AB,即|PA-PB|≤AB,所以當點P到A、B兩點距離之差的絕對值最大時,點P在直線AB上.先運用待定系數(shù)法求出直線AB的解析式,再令y=0,求出x的值即可得到點P1的坐標;點A關于x軸的對稱點為A',求得直線A'B的解析式,令y=0,即可得到點P2的坐標,進而得到以P1P2為邊長的正方形的面積.【詳解】由題意可知,當點P到A、B兩點距離之差的絕對值最大時,點P在直線AB上.設直線AB的解析式為y=kx+b,∵A(0,1),B(1,2),∴,解得,∴y=x+1,令y=0,則0=x+1,解得x=-1.∴點P1的坐標是(-1,0).∵點A關于x軸的對稱點A'的坐標為(0,-1),設直線A'B的解析式為y=k'x+b',∵A'(0,-1),B(1,2),,解得,∴y=3x?1,令y=0,則0=3x?1,解得x=,∴點P2的坐標是(,0).∴以P1P2為邊長的正方形的面積為(+1)2=,【點睛】本題考查了最短距離問題,待定系數(shù)法求一次函數(shù)的解析式及x軸上點的坐標特征.根據(jù)三角形兩邊之差小于第三邊得出當點P在直線AB上時,P點到A、B兩點距離之差的絕對值最大,是解題的關鍵.3、A【解析】
平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù),結合圖表中的數(shù)據(jù)即可求出這組數(shù)據(jù)的平均數(shù)了;觀察圖表可知,只有勞動時間是4小時的人數(shù)是2,其他都是1人,據(jù)此即可得到眾數(shù),總共有5名同學,則排序后,第3名同學所對應的勞動時間即為中位數(shù),【詳解】觀察表格可得,這組數(shù)據(jù)的中位數(shù)和眾數(shù)都是4,平均數(shù)=(3+3.2+4×2+4.5)÷5=3.74.故選A.【點睛】此題考查加權平均數(shù),中位數(shù),解題關鍵在于看懂圖中數(shù)據(jù)4、B【解析】
根據(jù)菱形性質(zhì)和軸對稱性質(zhì)可得AP⊥DE,PA=PB,即DE垂直平分PA,由中垂線性質(zhì)得,PD=CD,PE=AE,由三角形中線性質(zhì)得PE=,得三角形ABP是直角三角形;由等腰三角形性質(zhì)得,∠DAP=∠DPA,∠DCP=∠DPC,所以,∠DPA+∠DPC=∠DAP+∠DCP=.【詳解】連接PE,因為,四邊形ABCD是菱形,所以,AB=BC=CD=AD,因為,點P與點A關于DE對稱,所以,AP⊥DE,PA=PB,即DE垂直平分PA,所以,PD=CD,PE=AE,又因為,E是AB的中點,所以,AE=BE,所以,PE=,所以,三角形ABP是直角三角形,所以,,所以,.因為DP不在菱形的對角線上,所以,∠PCD≠30?,又DC=DP,所以,,因為,DA=DP=DC,所以,∠DAP=∠DPA,∠DCP=∠DPC,所以,∠DPA+∠DPC=∠DAP+∠DCP=,即.綜合上述,正確結論是.故選B【點睛】本題考核知識點:菱形性質(zhì),軸對稱性質(zhì),直角三角形中線性質(zhì).解題關鍵點:此題比較綜合,要靈活運用軸對稱性質(zhì)和三角形中線性質(zhì)和等腰三角形性質(zhì).5、B【解析】
根據(jù)隨的增大而增大,可以判斷直線從左到右是上升的趨勢,說明一次函數(shù)與軸的交點在軸正半軸,綜合可以得出一次函數(shù)的圖像.【詳解】根據(jù)隨的增大而增大,可以判斷直線從左到右是上升的趨勢,說明一次函數(shù)與軸的交點在軸正半軸,綜合可以得出一次函數(shù)的圖像為B故選B【點睛】本題主要考查了一次函數(shù)的圖像,以及和對圖像的影響,掌握一次函數(shù)的圖像和性質(zhì)是解題的關鍵.6、A【解析】試題分析:根據(jù)位似變換的定義:對應點的連線交于一點,交點就是位似中心.即位似中心一定在對應點的連線上.解:∵位似圖形的位似中心位于對應點連線所在的直線上,點M、N為對應點,所以位似中心在M、N所在的直線上,因為點P在直線MN上,所以點P為位似中心.故選A.考點:位似變換.7、D【解析】
根據(jù)第四象限內(nèi)點的坐標特征為(+,-)列不等式求解即可.【詳解】由題意得2m-1<0,∴.故選D.【點睛】本題考查了平面直角坐標系中點的坐標特征.第一象限內(nèi)點的坐標特征為(+,+),第二象限內(nèi)點的坐標特征為(-,+),第三象限內(nèi)點的坐標特征為(-,-),第四象限內(nèi)點的坐標特征為(+,-),x軸上的點縱坐標為0,y軸上的點橫坐標為0.8、B【解析】
直接利用三角形的中位線定理得出,且,再利用勾股定理以及直角三角形的性質(zhì)得出EG以及DG的長.【詳解】連接DE∵在邊長為4的等邊△ABC中,D,E分別為AB,BC的中點∴DE是△ABC的中位線,∴,且,∵EF⊥AC于點F∴,∴故根據(jù)勾股定理得∵G為EF的中點∴∴故答案為:B.【點睛】本題考查了三角形的線段長問題,掌握中位線定理、勾股定理是解題的關鍵.9、D【解析】
通過觀察圖象獲取信息列出函數(shù)解析式,并根據(jù)一次函數(shù)的性質(zhì)逐一進行判斷即可。【詳解】解:由圖象可得,服藥后2小時內(nèi),血液中的含藥量逐漸增多,在2小時的時候達到最大值,最大值為每毫升6微克,故(1)是正確的;設當0≤x≤2時,設y=kx,∴2k=6,解得k=3∴y=3x當y=4時,x=設直線AB的解析式為y=ax+b,得解得a=-;b=∴y=-x+當y=4時,x=∴每毫升血液中含藥量不低于4微克的時間持續(xù)-小時,故(2)正確把y=0代入y=-x+得x=18前一天下午六點到第二天上午12點時間為18小時,所以(3)正確。故正確的說法有3個.故選:D【點睛】主要考查了函數(shù)圖象的讀圖能力.要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結合實際意義得到正確的結論.10、B【解析】
作DF⊥BC,BE⊥CD,先證四邊形ABCD是平行四邊形.再證Rt△BEC≌Rt△DFC,得,BC=DC,所以,四邊形ABCD是菱形.【詳解】如圖,作DF⊥BC,BE⊥CD,由已知可得,AD∥BC,AB∥CD∴四邊形ABCD是平行四邊形.在Rt△BEC和Rt△DFC中∴Rt△BEC≌Rt△DFC,∴BC=DC∴四邊形ABCD是菱形.故選B【點睛】本題考核知識點:菱形的判定.解題關鍵點:通過全等三角形證一組鄰邊相等.二、填空題(每小題3分,共24分)11、(5,-1).【解析】試題分析:已知點P在第四象限,可得點P的橫、縱坐標分別為正數(shù)、負數(shù),又因為點P到x軸的距離為1,到y(tǒng)軸的距離為5,所以點P的橫坐標為5或-5,縱坐標為1或-1.所以點P的坐標為(5,-1).考點:各象限內(nèi)點的坐標的特征.12、【解析】試題分析:此題考查了翻折變換、勾股定理及銳角三角函數(shù)的定義,解答本題的關鍵是掌握翻折變換前后對應邊相等、對應角相等,難度一般.在RT△ABC中,可求出AB的長度,根據(jù)折疊的性質(zhì)可得出AE=EB=AB,在RT△ADE中,利用tanB=tan∠DAE即可得出DE的長度.∵AC=6,BC=8,∴AB==10,tanB=,由折疊的性質(zhì)得,∠B=∠DAE,tanB=tan∠DAE=,AE=EB=AB=5,∴DE=AEtan∠DAE=.故答案為.考點:翻折變換(折疊問題).13、3+2【解析】
證明△COD≌△OAE,推理出△OCF面積=四邊形FDAE面積=2÷2=3,設OF=x,F(xiàn)C=y,則xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30,從而可得x+y的值,則△OFC周長可求.【詳解】∵正方形OABC頂點B的坐標為(3,3),∴正方形的面積為1.所以陰影部分面積為1×=2.∵四邊形AOCB是正方形,∴∠AOC=90°,即∠COE+∠AOE=90°,又∵CD⊥OE,∴∠CFO=90°∴∠OCF+∠COF=90°,∴∠OCD=∠AOE在△COD和△OAE中∴△COD≌△OAE(AAS).∴△COD面積=△OAE面積.∴△OCF面積=四邊形FDAE面積=2÷2=3.設OF=x,F(xiàn)C=y,則xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30.所以x+y=2.所以△OFC的周長為3+2.故答案為3+2.【點睛】本題主要考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì),解題的關鍵是推理出兩個陰影部分面積相等,得到△OFC兩直角邊的平方和、乘積,運用完全平方公式求解出OF+FC值.14、x≠1【解析】分析:根據(jù)分母不為零分式有意義,可得答案.解:由有意義,得x﹣1≠0,解得x≠1有意義的條件是x≠1,故答案為:x≠1.15、1【解析】
根據(jù)平行四邊形的性質(zhì)求出AD的長,再根據(jù)中位線的性質(zhì)即可求出OE的長.【詳解】解:∵,∵,∴.∵為的中點,∴為的中位線,∴.故答案為:1.【點睛】此題主要考查平行四邊形與中位線的性質(zhì),解題的關鍵是熟知平行四邊形的對邊相等.16、48°【解析】
根據(jù)旋轉得出AC=DC,求出∠CDA,根據(jù)三角形內(nèi)角和定理求出∠ACD,即可求出答案.【詳解】∵將△ABC繞點C按逆時針方向旋轉,得到△DCE,點A的對應點D落在AB邊上,∴AC=DC,∵∠CAB=66°,∴∠CDA=66°,∴∠ACD=180°-∠A-∠CDA=48°,∴∠BCE=∠ACD=48°,故答案為:48°.【點睛】本題考查了三角形內(nèi)角和定理,旋轉的性質(zhì)的應用,能求出∠ACD的度數(shù)是解此題的關鍵.17、1【解析】
利用同分母分式加減法法則:同分母的分式相加減,分母不變,把分子相加減,即可得出答案.【詳解】解:=1.故答案是:1.【點睛】考查了分式的加減法,熟練掌握運算法則是解本題的關鍵.18、.【解析】
首先,需要證明線段B1B2就是點B運動的路徑(或軌跡),如圖1所示.利用相似三角形可以證明;其次,證明△APN∽△AB1B2,列比例式可得B1B2的長.【詳解】解:如圖1所示,當點P運動至ON上的任一點時,設其對應的點B為Bi,連接AP,ABi,BBi,∵AO⊥AB1,AP⊥ABi,∴∠OAP=∠B1ABi,又∵AB1=AO?tan30°,ABi=AP?tan30°,∴AB1:AO=ABi:AP,∴△AB1Bi∽△AOP,∴∠B1Bi=∠AOP.同理得△AB1B2∽△AON,∴∠AB1B2=∠AOP,∴∠AB1Bi=∠AB1B2,∴點Bi在線段B1B2上,即線段B1B2就是點B運動的路徑(或軌跡).由圖形2可知:Rt△APB1中,∠APB1=30°,∴Rt△AB2N中,∠ANB2=30°,∴∴∵∠PAB1=∠NAB2=90°,∴∠PAN=∠B1AB2,∴△APN∽△AB1B2,∴,∵ON:y=﹣x,∴△OMN是等腰直角三角形,∴OM=MN=,∴PN=,∴B1B2=,綜上所述,點B運動的路徑(或軌跡)是線段B1B2,其長度為.故答案為:.【點睛】本題考查動點問題,用到了三角形的相似、和等腰三角形的性質(zhì),解題關鍵是找出圖形中的相似三角形,利用對應邊之比相等進行邊長轉換.三、解答題(共66分)19、(1)無數(shù);(2)圖形見解析;1.【解析】
(1)內(nèi)角不固定,有無數(shù)個以線段a,b為一組鄰邊作平行四邊形;(2)作∠MAN=a,以A為圓心,線段a和線段b為半徑畫弧分別交射線AN和AM于點D和B,以D為圓心,線段b為半徑畫弧,以B為圓心,線段a為半徑畫弧,交于點C;連接BC,DC.則平行四邊形ABCD就是所求作的圖形.【詳解】解:(1)以線段a,b為一組鄰邊作平行四邊形,這樣的平行四邊形能作無數(shù)個,故答案為:無數(shù);(2)以線段a,b為一組鄰邊,它們的夾角為∠α,作平行四邊形,這樣的平行四邊形能作1個,如圖所示:四邊形ABCD即為所求.故答案為:1.【點睛】此題主要考查平行四邊形的作法,熟練掌握作圖方法是解題的關鍵.20、(1)證明見解析(2)證明見解析(3)當BE⊥CD時,∠EFD=∠BCD【解析】
(1)先判斷出△ABC≌△ADC得到∠BAC=∠DAC,再判斷出△ABF≌△ADF得出∠AFB=∠AFD,最后進行簡單的推算即可;(2)先由平行得到角相等,用等量代換得出∠DAC=∠ACD,最后判斷出四邊相等;(3)由(2)得到判斷出△BCF≌△DCF,結合BE⊥CD即可.【詳解】(1)證明:在△ABC和△ADC中,AB=ADCB=CD∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,在△ABF和△ADF中,AB=AD∠BAF=∠DAF∴△ABF≌△ADF(SAS),∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)證明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四邊形ABCD是菱形;(3)BE⊥CD時,∠BCD=∠EFD;理由如下:∵四邊形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.21、(1)原方程無解;(2),.【解析】
(1)觀察可得方程最簡公分母為(x+1)(x-1),去分母,轉化為整式方程求解,結果要檢驗.【詳解】(1)去分母得:,整理得,解得x=1,檢驗知:x=1是增根,原方程無解;(2)方程整理得:,分解因式得:,即(x﹣2)(x﹣1)=0,可得x﹣2=0或x﹣1=0,解得:,.【點睛】此題考查了解分式方程,以及解一元二次方程,熟練掌握運算法則是解本題的關鍵.22、甲種商品的每件進價為40元,乙種商品的每件進價為48元;甲種商品按原銷售單價至少銷售20件.【解析】【分析】設甲種商品的每件進價為x元,乙種商品的每件進價為(x+8))元根據(jù)“某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元購進的甲、乙兩種商品件數(shù)相同”列出方程進行求解即可;設甲種商品按原銷售單價銷售a件,則由“兩種商品全部售完后共獲利不少于2460元”列出不等式進行求解即可.【詳解】設甲種商品的每件進價為x元,則乙種商品的每件進價為元,根據(jù)題意得,,解得,經(jīng)檢驗,是原方程的解,答:甲種商品的每件進價為40元,乙種商品的每件進價為48元;甲乙兩種商品的銷售量為,設甲種商品按原銷售單價銷售a件,則,解得,答:甲種商品按原銷售單價至少銷售20件.【點睛】本題考查了分式方程的應用,一元一次不等式的應用,弄清題意,找出等量關系列出方程,找出不等關系列出不等式是解題的關鍵.23、(1)見解析(2)6.8;7(3)乙組成績比甲組穩(wěn)定【解析】
根據(jù)表格中的數(shù)據(jù)可以將條形統(tǒng)計圖補充完整;根據(jù)表格中的數(shù)據(jù)可以計算出a的值,求出乙組的中位數(shù)b的值;本題答案不唯一、合理即可.【詳解】解:如右圖所示;,,故答案為:,7;第一、乙組的中位數(shù)高于甲組,說明乙組的成績中等偏上的人數(shù)比甲組多;第二、乙組的方差比甲組小,說明乙組成績比甲組穩(wěn)定.【點睛】本題考查方差、中位數(shù)、眾數(shù)、加權平均數(shù)、條形統(tǒng)計圖,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.24、(1)5;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院老人入住手續(xù)制度
- 養(yǎng)老院老人安全保障制度
- 向命運挑戰(zhàn)課件
- 城市經(jīng)濟學城市化教學課件
- 救生員入職合同(2篇)
- 2024年度生物安全試劑采購與儲備合同3篇
- 2024年農(nóng)業(yè)設施維修及保養(yǎng)承包合同樣本3篇
- 2025年大興安嶺貨運從業(yè)資格證模擬考試題目
- 2025年塔城貨物運輸駕駛員從業(yè)資格考試系統(tǒng)
- 2025年阜陽貨運從業(yè)資格證試題庫及答案
- 人教版(2024新版)英語七年級上冊期末復習綜合測試卷(含答案)
- 養(yǎng)老服務與康復機構作業(yè)指導書
- 五育并舉-勞以啟智動以潤心
- 2024年家裝家居行業(yè)解決方案-淘天集團
- 《論語》導讀(復旦版)學習通超星期末考試答案章節(jié)答案2024年
- 中國電建在線測評題
- 人教版八年級上冊數(shù)學第三次月考試題
- 安徽社區(qū)食堂投標方案
- 不良行為學生教育轉化工作實施方案
- 2024年新人教版七年級上冊生物課件 第三章 微生物 第一節(jié) 微生物的分布
- 創(chuàng)業(yè)基礎學習通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論