




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省重點高中智學聯盟2023年秋季高三年級10月聯考
數學答案
l.B2.A3.B4.A5.B6.C7.D8.C9.ABDW.ACDW.AB12.BC湖北省重點高
中智學聯盟2023年秋季高三年級10月聯考
數學試題
命題學校:新洲一中(邦城校區(qū))命題人:黃宏斌審題人:陳雙雄
一、單選題:本題共8小題,每小題5分,共40分。在每小題列出的選項中,選出符合題目的一
項。
1.設集合M={x|x=,+eZ},N={x|x=:+eZ},則()
A.M=NB.MUN=NC.N曙MD.MCN=0
2.已知命題p:3x6[-1,3],/一。一3wo.若p為假命題,則a的取值范圍為()
A.(—8,—3)B.(—8,—2)C.(—8,6)D.(—8,0)
3.已知Q<bVc且a+2b+4c=0,則2的取值范圍是()
a
A.(-8,一》B.(一?1)C.(0,》D.&1)
4.已知函數/(%)滿足/(%)+2/(-%)=4%,則f(2)等于()
A.-8B.8C.-6D.6
5.已知角a終邊上一點P(—2,3),則"S(/a)sin(m+a)的值為()
cos(7r-a)sin(3zr+a)
6.設函數/"(x)=竺過+(x-a)2(xeR),若關于x的不等式/(x)<尚有解,則實數a的值為()
1617
7.已知a,b,c分別為AABC三個內角A,B,C的對邊,且a?cosC+V3a-sinC-b-c=0,則A=()
7T7T2n
A.B.C.
263
8.己知定義在R上的函數/(x)的圖像關于直線x=l對稱,且關于點(2,0)中心對稱。設
g(x)=(x-l)/(x).若g(23)=88,£管0。)=()
A.4040B.4044C.4048D.4052
二、多選題:本題共4小題,每小題5分,共20分。在每小題有多項符合題目要求,全部選對的
得5分,部分選對的得2分,有選錯的得0分。
9.定義在實數集上的函數D(x)=fl'x為有理上數?稱為狄利克雷函數.該函數由19世紀德國數學家狄
為無理數
利克雷提出,在高等數學的研究中應用廣泛.下列有關狄利克雷函數。(乃的說法中正確的是()
A.D(x)的值域為{0,1}B.O(x)是偶函數
C.存在無理數",使D(x+to)=C(x)D.對任意有理數3有D(x+t)=D(x)
10.已知函數/(均=1211(3%一£)(3>0),則下列說法正確的是()
A.若/'(X)的最小正周期是2兀,則3=g
B.當3=1時,f(x)的對稱中心的坐標為(/OT+9O)(kez)
C.當3=2時,f(d)>/'閨
D.若/(X)在區(qū)間卷,兀)上單調遞增,則0<3?|
11.設函數/(x)的定義域為。,如果對任意的右6。,存在X26。,使得曲等經2=c(c為常數),
則稱函數y=/(x)在。上的均值為c,下列函數中在其定義域上的均值為2的有()
A.y=x3B.y=tanxC.y=2sinxD.y=V4—x2
12.已知函數/(%)=-久3+2/-3%,若過點P(-2,7n)(niEZ)可作曲線y=f(x)的三條切線,則?n
的值可以為()
A.3B.4C.21D.22
三、填空題:本題共4小題,每小題5分,共20分。
13.已知問1,8],則函數f(%)=%+:的最大值與最小值的和為.
14.函數y=2sin(一2x+習+1最小正周期為______.
15.若函數/(x)=loga(-/+ax+l)(a>0且a于1)在(2,3)是減函數,則實數a的取值范圍
是.
16.有這樣一個事實:函數y=log±x與y=(有三個交點為(;小,P?&;),03在直線y=x上。一
般地,我們有結論:對于函數y=log。與/=標的圖像交點問題,當0<a<e-e時,有三個交點,
當e-e<a<1時有一個交點;借助導數可以推導:當1<a<?時有兩個交點,當a=?時有一個
交點,當a>?時沒有交點;先推導出?的值,并且求:關于x的方程/x-3nx=0在(0,+8)上只
有一個零點,t的取值范圍為_______.
四、解答題:本題共6小題,共70分。解答應寫出文字說明、證明過程或演算步驟。
17.(本小題10分)
設(7=/?,A—{x\x2—4x+3<0},B={x|<0},C-{x|a<x<a+l,aGR}.
(1)分別求AnB,AU(CuB);
(2)若BUC=B,求實數a的取值范圍.
18.(本小題12分)
已知函數/"(X)=盤雪①6R)為R上的奇函數,
(1)求實數a的值;
(2)判斷函數f(x)的單調性并證明;
(3)設函數g(x)=?x+b,b6R,若對任意的久16[0,1],總存在%26[0,1],使得g(Xi)=3f(X2)成立,求
實數b的取值范圍。
19.(本小題12分)求值:
(l)sin40°(V3-tan10°)
(2)sin210o+cos240°+sinl00cos40°
20.(本小題12分)
現有大小相同的7個紅球和8個黑球,一次取出4個。
(1)求恰有一個黑球的概率;
(2)取出紅球的個數為X,求X的分布列和數學期望;
(3)取出4個球同色,求全為紅球的概率。
21.(本小題12分)
在AABC中,B=p點D在邊AB上,BD=2,且DA=DC.
(1)若ABCD的面積為2次,求邊CD的長;
(2)若AC=2倔求NDCA.
22.(本小題12分)
己知:函數/(x)=xlnx,(x>0)
(1)求f(x)的單調區(qū)間和極值;
(2)證明:ex-2x>x/(x):(參考數據:e2?7.39,e3?20.09)
(3)若不等式/(x)S—/+5+1次-<1的解集中恰有三個整數解,求實數a的取值范圍。(第三問
直接寫出答案,不需要詳細解答,參考數據:ln270.6931,ln3,1.0986)
13.1614.n15.[1,4]16{t|-eKt<0勘=3
12.解法一://(x)=-3x2+4x-3,設切點為Qo,一瑞+2瑞-3x(j),
4
則切線方程為y+瑞-2%o+3x0=(-3%o+%0-3)(x-x0)>
將x=-2,y=?n代入得,m=2端+4詔-8x0+6,
令g(%)=2x3+4%2—8%+6,則g'(%)=6x2+8x-8=2(%4-2)(3%—2),
??.x>|或x<—2時,,(%)>0,當—2<x<|時,g'(x)<0,
故函數g(x)的單增區(qū)間為(一8,-2)和管,+oo),g(x)的單減區(qū)間為(-2,1),
?1.g(x)的極大值為g(-2)=22,極小值為g(|)=g,
由題意知,^<m<22,又小為整數,
:.m=4,5,......20,21
解法二:f'(x)--3x2+4x-3,/''(x)=-6x+4,.?.函數/(x)的對稱中心坐標為P(|,/(|))
=(|,-§).函數“X)在點p處切線方程為y-(-招)=/'?(■》即為y+罵=一沁_|),再令
x=—2,得丫=畀又/(—2)=22,由題意知,g<m<22,又m為整數,
???m=4,5,...20,21
16.(1)當a>1時,先求?的值,有一個交點時,由題意可知切點在直線y=x上,設切點橫坐標為&,由
導數幾何意義可知就花=ax°Tna=1,二ax°=e,lna=a=《;
(2)由e'x=/nx,可得(e')x=logetx,令e,=a,則loga%=謨(0<a且a芋1),
由提供的信息可得,e-ewa=<1或a=et=£,二{t|"eWt<0或t=;}
2
17.解:(1)vA={x\x—4%4-3<0},AA=(1,3),.................................(1分)
又由號W0,得Q-2)0-4)<0,且(x-4)H0B=[2,4),..................(3分)
:.AOB=[2,3),.................................(4分)
,-,C(jB=(-oo,2)U[4,+oo),
AU(CyB)=(-a>,3)U[4,+<?);................(6分)
(2>BUC=B,???CUB,.............................(7分)
又?;C=[a,a+1],B=[2,4),
?'?I詈力解得2口<3,.............................(9分)
lQ+1V4,
???實數a的取值范圍為[2,3)..............................(10分)
18.解:(1)?.?函數f(x)是奇函數,=-/0).................................(1分)
即|^=一落,整理有對于Vx€R,(l+a)(2x+1)=(),.?.a=-1......................(4分)
(此處用-0)=0得出a=-1的如果沒有驗證函數/(x)是奇函數的扣2分)
(2)函數"X)在R上單調遞增,證明如下:............(5分)
.?"(》)=舒1一島,13=需急°,
???函數/'(X)在R上單調遞增..........(8分)
用單調性定義證明的同樣給分。
(3)設人={y|y=g(x1),xie[0,1]},B={y|y=3/(x2),x2e[0,1]),
有條件可知,AcB(9分)
由(2)問可知,y=3/(x2)在不6[0,1]時單調遞增,=[0,1],..........(10分)
,1(b>0i
又???A=[r叱+b],;.,+bv,0WbW5..........(12分)
19.解:(1)sin40°(V3-tan10°)=sin40°(V3-..........(1分)
?.ozV3cosl0o-sinl0\..2sin(60°-10°)2cos400sin80°(4、
=sin4A℃―—)=9口40no。Msl。。=smA40ao7^7=-=1..........(6分)
(2)方法一:sm210°+cos240°+sml0°cos40o=lc^s20++-snisojs,nso...(8分)
cos80°-cos200+sinS00cos80°-cos200+sin500
22
3,cos650o+30°;-cos(50°-30。)+sin50。33
-+------------------------------------------------------=—4-0=-.....(12分)
4244
方法二:構造對偶式
2222
設m=sin100+cos40°4-sinl0°cos40°/n=cos100+sin400+cosl0°sin40°,貝!J...(8分)
m+n=2+s譏50°,n—m=cos20°—cos800+s譏30°,則
2m=2-i+sin500-cos20°+cos800=m=-.....(12分)
224/
方法三:構造三角形,令外接圓半徑為右則由正弦定理可得
則a=sml0°,b=cos40°=sm50°,c=sinl20°,再由余弦定理,
O
c2=a2+h2-2abcosC=sm210°+sm250°—2sml00sin500cosl20°=sin2120°=-
4
……(12分)
20.解:(1)記事件A="求恰有一個黑球〃,則由古典概型公式可得
PG4)=^=*.....(3分)
(2)X的可能取值為0,1,2,3,4,.....(4分)
P(x=0)=4=--P(X=1)=,P(x=2)=^=里,
',第539'7臉195,臉195
P(X=3)=警=P(x=4)=導=*,X的分布列如下:.....(7分)
c
G153V15J?
(概率對了一個給1分,不超過7分,此處沒有約分的不扣分)
X01234
P2568481
391951953939
「八7、-2-56_84_8136428/c八\
E(X)=0x—+1x——i-2x—+3x—+4x—=—=—.....(9分)
',39195195393919515
(此處沒有約分的扣1分)
(3)記事件B=”取出4個球同色,求全為紅球”,則由條件概率公式有
p⑻=扁=4...........(12分)
21.解:(1)
在ABCD中,SABCD=|BD-BC-sin/DBC=2K,且BD=2,zDBC=1,可得BC=4(2分)
在ABCD中,由余弦定理有,DC2=DB2+BC2-2DB-BGCOSNDBC=12,
??.DC=2V3.......(5分)
(2)記NDCA=6(0,勃,貝!|NBDC=2。,,NDAC=a/BCD=與一20,
ZADC=n—20;(6分)
記AD=DC=m/BC=a,
BCBDCD2
在ABCD中,由正弦定理有嬴玄(7分)
Si/lZ-DUC.sinzBCDsin/DBC'sin20-sin(普-29)15譏為
ACAD
26m
在AACD中,由正弦定理有嬴嬴(8分)
一sinzACDsin26siW
2
'''msin28=2於sinS=a嗚a=4sin0,即有鬻=2(分)
sm(羊一26)cose'9
???5in(y-20)=cos0=sin^+g),J.NDCA=。哥或《(12分)
(掉了一個解扣2分)
22.解:(1)???/(x)=xlnx,(x>0)/Q)=inx+1,
令/(x)=0,可得x=5列表如下:..........(1分)
X1
G)e
八乃—0+
f(x)極小值一工t
e
...........(2分)
???/(無)的單調遞減區(qū)間為(0,》,單調遞增區(qū)間為C,+8),極小值為-%無極大值。
(“無極大值”掉了的扣1分)……(4分)
(2)解法1:要證e*-2x>%,x/nx,只需證‘Inx(對數靠邊走).....(5分)
X2
設g(x)=三手-Inx,則g(x)=1-X管-2),易知[/>x+1>x,令g(x)=0,可得x=2,列表如
下:……(6分)
X(0,2)2(2,+oo)
—0+
g'(x)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新版一年級語文生字表
- 2024能效鑒定范圍
- 2024屆福建美術聯考一分一段表
- 一年級品德與生活上冊 愛護自己的身體教學設計 首師大版
- 2025一級建造師重點考點 機電實務 招投標管理、合同管理
- 化肥儲罐施工方案
- 門柱模板施工方案
- 木質長廊施工方案
- 江西省2024-2025學年高一下學期第一次聯考語文試題(原卷版+解析版)
- 住建部《建筑業(yè)10項新技術(2017版)》解讀培訓課件
- 合作社組織架構圖
- 《你知道嗎?》羅鳴亮
- 彩色簡約魚骨圖PPT圖表模板
- 公司職工薪酬福利制度薪酬福利制度
- 高中英語各種教材詞組匯總大全(超級實用)
- 內燃機機油泵轉子系列參數
- 高溫導線規(guī)格及安全電流計算
- 愛麗絲夢游仙境中英劇本(共21頁)
- 四十二手眼圖(經典珍藏版)
- 通用橫版企業(yè)報價單模板
評論
0/150
提交評論