2023-2024學(xué)年河北省唐山市玉田縣高考數(shù)學(xué)五模試卷含解析_第1頁
2023-2024學(xué)年河北省唐山市玉田縣高考數(shù)學(xué)五模試卷含解析_第2頁
2023-2024學(xué)年河北省唐山市玉田縣高考數(shù)學(xué)五模試卷含解析_第3頁
2023-2024學(xué)年河北省唐山市玉田縣高考數(shù)學(xué)五模試卷含解析_第4頁
2023-2024學(xué)年河北省唐山市玉田縣高考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年河北省唐山市玉田縣高考數(shù)學(xué)五模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.112.設(shè)集合,則()A. B. C. D.3.如圖,這是某校高三年級甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學(xué)成績平均分的平均水平高于乙班B.甲班的數(shù)學(xué)成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學(xué)成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學(xué)測試的總平均分是1034.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是5.的展開式中的系數(shù)是-10,則實(shí)數(shù)()A.2 B.1 C.-1 D.-26.已知是雙曲線的左右焦點(diǎn),過的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.7.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.8.已知角的終邊經(jīng)過點(diǎn),則A. B.C. D.9.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結(jié)論:①曲線有四條對稱軸;②曲線上的點(diǎn)到原點(diǎn)的最大距離為;③曲線第一象限上任意一點(diǎn)作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結(jié)論的序號是()A.①② B.①③ C.①③④ D.①②④10.已知函數(shù),其中,,其圖象關(guān)于直線對稱,對滿足的,,有,將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,則函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.11.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學(xué)院、國防大學(xué)、國防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國防科技大學(xué)的是研究生.則丙是來自哪個院校的,學(xué)位是什么()A.國防大學(xué),研究生 B.國防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國防科技大學(xué),研究生12.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若正三棱柱的所有棱長均為2,點(diǎn)為側(cè)棱上任意一點(diǎn),則四棱錐的體積為__________.14.若展開式中的常數(shù)項為240,則實(shí)數(shù)的值為________.15.的展開式中所有項的系數(shù)和為______,常數(shù)項為______.16.已知向量,,,若,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某市為了鼓勵市民節(jié)約用電,實(shí)行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費(fèi),超過度但不超過度的部分按元/度收費(fèi),超過度的部分按元/度收費(fèi).(I)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費(fèi)用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)代替,記為該居民用戶1月份的用電費(fèi)用,求的分布列和數(shù)學(xué)期望.18.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數(shù)列中,,且,若數(shù)列的前n項和為,求證:.19.(12分)已知橢圓,點(diǎn)為半圓上一動點(diǎn),若過作橢圓的兩切線分別交軸于、兩點(diǎn).(1)求證:;(2)當(dāng)時,求的取值范圍.20.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點(diǎn).(1)求證:平面平面;(2)點(diǎn)在線段上,且,求平面與平面所成的銳二面角的余弦值.21.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍22.(10分)[選修45:不等式選講]已知都是正實(shí)數(shù),且,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候?yàn)檫^點(diǎn)的時候,解得所以,此時故選A項【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡單題.2、C【解析】

解對數(shù)不等式求得集合,由此求得兩個集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點(diǎn)睛】本小題主要考查對數(shù)不等式的解法,考查集合交集的概念和運(yùn)算,屬于基礎(chǔ)題.3、D【解析】

計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因?yàn)榧?、乙兩班的人?shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點(diǎn)睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計算能力和應(yīng)用能力.4、B【解析】

根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點(diǎn)代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點(diǎn)睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.5、C【解析】

利用通項公式找到的系數(shù),令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點(diǎn)睛】本題考查求二項展開式中特定項的系數(shù),考查學(xué)生的運(yùn)算求解能力,是一道容易題.6、D【解析】

根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.7、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.8、D【解析】因?yàn)榻堑慕K邊經(jīng)過點(diǎn),所以,則,即.故選D.9、C【解析】

①利用之間的代換判斷出對稱軸的條數(shù);②利用基本不等式求解出到原點(diǎn)的距離最大值;③將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】①:當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;綜上可知:有四條對稱軸,故正確;②:因?yàn)?,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設(shè)任意一點(diǎn),所以圍成的矩形面積為,因?yàn)椋?,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因?yàn)閳A的面積為:,所以四葉草的面積小于,故正確.故選:C.【點(diǎn)睛】本題考查曲線與方程的綜合運(yùn)用,其中涉及到曲線的對稱性分析以及基本不等式的運(yùn)用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.10、B【解析】

根據(jù)已知得到函數(shù)兩個對稱軸的距離也即是半周期,由此求得的值,結(jié)合其對稱軸,求得的值,進(jìn)而求得解析式.根據(jù)圖像變換的知識求得的解析式,再利用三角函數(shù)求單調(diào)區(qū)間的方法,求得的單調(diào)遞減區(qū)間.【詳解】解:已知函數(shù),其中,,其圖像關(guān)于直線對稱,對滿足的,,有,∴.再根據(jù)其圖像關(guān)于直線對稱,可得,.∴,∴.將函數(shù)的圖像向左平移個單位長度得到函數(shù)的圖像.令,求得,則函數(shù)的單調(diào)遞減區(qū)間是,,故選B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖像與性質(zhì)求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調(diào)區(qū)間的求法,屬于中檔題.11、C【解析】

根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來自軍事科學(xué)院;由②來自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點(diǎn)睛】本題考查了合情推理的簡單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.12、B【解析】

先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運(yùn)算,邏輯推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

依題意得,再求點(diǎn)到平面的距離為點(diǎn)到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長均為2,則,點(diǎn)到平面的距離為點(diǎn)到直線的距離所以,所以.故答案為:【點(diǎn)睛】本題考查椎體的體積公式,考查運(yùn)算能力,是基礎(chǔ)題.14、-3【解析】

依題意可得二項式展開式的常數(shù)項為即可得到方程,解得即可;【詳解】解:∵二項式的展開式中的常數(shù)項為,∴解得.故答案為:【點(diǎn)睛】本題考查二項式展開式中常數(shù)項的計算,屬于基礎(chǔ)題.15、3-260【解析】

(1)令求得所有項的系數(shù)和;(2)先求出展開式中的常數(shù)項與含的系數(shù),再求展開式中的常數(shù)項.【詳解】將代入,得所有項的系數(shù)和為3.因?yàn)榈恼归_式中含的項為,的展開式中含常數(shù)項,所以的展開式中的常數(shù)項為.故答案為:3;-260【點(diǎn)睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎(chǔ)題.16、-1【解析】

由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)論.【詳解】由已知,∵,∴,.故答案為:-1.【點(diǎn)睛】本題考查向量垂直的坐標(biāo)運(yùn)算.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),;(3)見解析.【解析】試題分析:(1)根據(jù)題意分段表示出函數(shù)解析式;(2)將代入(1)中函數(shù)解析式可得,即,根據(jù)頻率分布直方圖可分別得到關(guān)于的方程,即可得;(3)取每段中點(diǎn)值作為代表的用電量,分別算出對應(yīng)的費(fèi)用值,對應(yīng)得出每組電費(fèi)的概率,即可得到的概率分布列,然后求出的期望.試題解析:(1)當(dāng)時,;當(dāng)當(dāng)時,;當(dāng)當(dāng)時,,所以與之間的函數(shù)解析式為.(2)由(1)可知,當(dāng)時,,則,結(jié)合頻率分布直方圖可知,∴,(3)由題意可知可取50,150,250,350,450,550,當(dāng)時,,∴,當(dāng)時,,∴,當(dāng)時,,∴,當(dāng)時,,∴,當(dāng)時,,∴,當(dāng)時,,∴,故的概率分布列為25751402203104100.10.20.30.20.150.05所以隨機(jī)變量的數(shù)學(xué)期望18、(Ⅰ)函數(shù)在上單調(diào)遞減,在單調(diào)遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】

(Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),通過解關(guān)于導(dǎo)數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè)g(x)=f(x)﹣ax,先求出函數(shù)g(x)的導(dǎo)數(shù),通過討論a的范圍,得到函數(shù)的單調(diào)性,從而求出a的最小值;(Ⅲ)先求出數(shù)列是以為首項,1為公差的等差數(shù)列,,,問題轉(zhuǎn)化為證明:,通過換元法或數(shù)學(xué)歸納法進(jìn)行證明即可.【詳解】解:(Ⅰ)f(x)的定義域?yàn)椋ī?,+∞),,當(dāng)時,f′(x)<2,當(dāng)時,f′(x)>2,所以函數(shù)f(x)在上單調(diào)遞減,在單調(diào)遞增.(Ⅱ)設(shè),則,因?yàn)閤≥2,故,(ⅰ)當(dāng)a≥1時,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調(diào)遞減,而g(2)=2,所以對所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當(dāng)1<a<1時,2<1﹣a<1,若,則g′(x)>2,g(x)單調(diào)遞增,而g(2)=2,所以當(dāng)時,g(x)>2,即f(x)>ax;(ⅲ)當(dāng)a≤1時,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調(diào)遞增,而g(2)=2,所以對所有的x>2,g(x)>2,即f(x)>ax;綜上,a的最小值為1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an?an+1,由a1=1得,an≠2,所以,數(shù)列是以為首項,1為公差的等差數(shù)列,故,,,?,由(Ⅱ)知a=1時,,x>2,即,x>2.法一:令,得,即因?yàn)?,所以,故.法二?下面用數(shù)學(xué)歸納法證明.(1)當(dāng)n=1時,令x=1代入,即得,不等式成立(1)假設(shè)n=k(k∈N*,k≥1)時,不等式成立,即,則n=k+1時,,令代入,得,即:,由(1)(1)可知不等式對任何n∈N*都成立.故.考點(diǎn):1利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;1、利用導(dǎo)數(shù)研究函數(shù)的最值;3、數(shù)列的通項公式;4、數(shù)列的前項和;5、不等式的證明.19、(1)見解析;(2).【解析】

(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時,求出兩切線的方程,驗(yàn)證結(jié)論成立;②兩切線、的斜率都存在,可設(shè)切線的方程為,將該直線的方程與橢圓的方程聯(lián)立,由可得出關(guān)于的二次方程,利用韋達(dá)定理得出兩切線的斜率之積為,進(jìn)而可得出結(jié)論;(2)求出點(diǎn)、的坐標(biāo),利用兩點(diǎn)間的距離公式結(jié)合韋達(dá)定理得出,換元,可得出,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【詳解】(1)由于點(diǎn)在半圓上,則.①當(dāng)兩切線、中有一條切線斜率不存在時,可求得兩切線方程為,或,,此時;②當(dāng)兩切線、的斜率都存在時,設(shè)切線的方程為(、的斜率分別為、),,,,.綜上所述,;(2)根據(jù)題意得、,,令,則,所以,當(dāng)時,,當(dāng)時,.因此,的取值范圍是.【點(diǎn)睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論