版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024拋物線中焦點弦的有關(guān)問題拋物線中焦點弦的有關(guān)問題一直以來,焦點弦都是《圓錐曲線》中的重要知識點,也是高考中的熱點問題,針對“拋物線的幾何性質(zhì)”這節(jié)課,筆者認(rèn)為,教師在講完之后,可適當(dāng)延伸一些有關(guān)“焦點弦”的問題:F知識點1:若是過拋物線的焦點的弦。設(shè),則(1);(2)F證明:如圖,(1)若的斜率不存在時,依題意若的斜率存在時,設(shè)為則,與聯(lián)立,得綜上:(2)接上,,但(2)另證:設(shè)與聯(lián)立,得F知識點2:若是過拋物線的焦點的弦。設(shè),則(1)(2)設(shè)直線的傾斜角為,則。F證明:(1)由拋物線的定義知(2)若由(1)知若聯(lián)立,得,而,F(xiàn)知識點3:若是過拋物線的焦點的弦,則以為直徑的圓與拋物線的準(zhǔn)線相切。F證明:過點分別向拋物線的準(zhǔn)線引垂線,垂足分別為過中點向準(zhǔn)線引垂線,垂足為設(shè)以為直徑的圓的半徑為以為直徑的圓與拋物線的準(zhǔn)線相切。F知識點4:若是過拋物線的焦點的弦。過點分別向拋物線的準(zhǔn)線引垂線,垂足分別為則。F證明略F知識點5:若是過拋物線的焦點的弦,拋物線的準(zhǔn)線與軸相交于點,則F證明:過點分別作準(zhǔn)線的垂線,垂足分別為,而∽F知識點6:若是過拋物線的焦點的弦,為拋物線的頂點,連接并延長交該拋物線的準(zhǔn)線于點則F證明:設(shè),則由知識點1知逆定理:若是過拋物線的焦點的弦,過點作交拋物線準(zhǔn)線于點則三點共線。證明略F知識點7:若是過拋物線的焦點的弦,設(shè)則F證法一:(1)若軸,則為通徑,而(2)若與軸不垂直,設(shè),的斜率為,則與聯(lián)立,得由拋物線的定義知方法二:利用極坐標(biāo)系下拋物線的方程設(shè)則知識點8:已知拋物線中,為其過焦點的弦,則FF證明:設(shè)則而逆定理:已知拋物線中,為其弦且與軸相交于點,若且則弦過焦點。證明:設(shè),,則=而而①又可設(shè)②由①②得恒過焦點可配套練習(xí):1.過拋物線的焦點作一直線交拋物線于兩點,若與的長度分別為則()A.B.C.D.2.直線經(jīng)過拋物線的焦點,且與拋物線交于兩點,由分別向其準(zhǔn)線引垂線垂足分別為如果,為的中點,則()A.B.C.D.3.直線經(jīng)過拋物線的焦點,且與拋物線交于兩點,與其準(zhǔn)線相交于點若則此拋物線方程可能為()A.B.C.D.4.經(jīng)過拋物線的焦點作一直線與拋物線交于兩點,為其準(zhǔn)線上任意一點,記若則與的大小關(guān)系為()A.B.C.D.不確定5.設(shè)為拋物線的頂點,為其過焦點的弦,若,求6.以拋物線的一條焦點弦為直徑的圓與準(zhǔn)線相切于點,求此拋物線和圓的方程。當(dāng)然,在高考中,直線與拋物線的位置關(guān)系不僅僅考查焦點弦問題,有關(guān)拋物線的切線形成的幾何問題最近幾年也一直是高考的熱點,在學(xué)習(xí)導(dǎo)數(shù)之后,教師不妨再和學(xué)生一起來集中歸納總結(jié),僅供讀者參考。魔術(shù)師的地毯一天,著名魔術(shù)大師秋先生拿了一塊長和寬都是1.3米的地毯去找地毯匠敬師傅,要求把這塊正方形地毯改成0.8米寬2.1米長的矩形.敬師傅對秋先生說:“你這位大名鼎鼎的魔術(shù)師,難道連小學(xué)算術(shù)都沒有學(xué)過嗎?邊長1.3米的正方形面積為1.69平方米,而寬0.8米長2.1米的矩形面積只有1.68平方米,兩者并不相等??!除非裁去0.01平方米,不然沒法做.”秋先生拿出他事先畫好的兩張設(shè)計圖,對敬師傅說:“你先照這張圖(圖1.2)的尺寸把地毯裁成四塊,然后照另一張圖(圖1.3)的樣子把這四塊拼在一起縫好就行了.魔術(shù)大師是從來不會錯的,你放心做吧!”敬師傅照著做了,縫好一量,果真是寬0.8米長2.1米.魔術(shù)師拿著改好的地毯滿意地走了,而敬師傅卻還在納悶兒:這是怎么回事呢?那0.01平方米的地毯到什么地方去了?你能幫敬師傅解開這個謎嗎?
過了幾個月,魔術(shù)師秋先生又拿來一塊地毯,長和寬都是1.2米,只是上面燒了一個燒餅大?。s0.01平方米)的窟窿.秋先生要求敬師傅將地毯剪剪拼拼把窟窿去掉,但長和寬仍舊是1.2米.敬師傅很為難,覺得這位魔術(shù)大師的要求不合理,根本無法做到.秋先生又拿出了自己的設(shè)計圖紙,要敬師傅按圖1.4的尺寸將地毯剪開,再按圖1.5的樣子拼在一起縫好.敬師傅照著做了,結(jié)果真的得到了一塊長和寬仍是1.2米的地毯,而原來的窟窿卻消失了.魔術(shù)師拿著補好的地毯得意洋洋地走了,而敬師傅還在想,補那窟窿的0.01平方米的地毯是哪里來的呢?你能幫敬師傅解開這個謎嗎?你準(zhǔn)備如何著手去揭開魔術(shù)大秘密呢?通常的辦法是根據(jù)他給的尺寸按某個比例(例如10:1)縮小,自己動手剪一剪、拼一拼,也就是做一具小模型,實際量一量,看看秘密藏在什么地方.這種做模型(或做實驗)的方法,是科技工作者和工程技術(shù)人員通常采用的方法.這種方法要求操作和測量都非常精確,否則你就發(fā)現(xiàn)不了秘密.例如,按縮小后的尺寸,剪拼前后面積差應(yīng)為1平方厘米,如果在你操作和測量過程中所產(chǎn)生的誤差就已經(jīng)大于1平方厘米了,那么你怎能發(fā)現(xiàn)那1平方厘米的面積差出在什么地方呢?數(shù)學(xué)工作者在研究和解決問題時,通常采用另一種方法—數(shù)學(xué)計算,即通過精細(xì)的數(shù)學(xué)計算來發(fā)現(xiàn)剪拼前后的面積差出在何處.現(xiàn)在我們先來分析第一個魔術(shù)。比較圖1.2和圖1.3將圖1.2中的四塊圖形分別記為Ⅰ,Ⅱ,Ⅲ,Ⅳ(圖1.6),而將圖1.3中相應(yīng)的四塊分別記為,,,(圖1.7).現(xiàn)在的問題是,圖1.6中的四塊能否拼得像圖1.7那樣“嚴(yán)絲合縫”、“不重不漏”?也就是說,圖1.7中所標(biāo)的各個尺寸是否全都準(zhǔn)確無誤?例如圖1.7中的為直角三角形,如果時,點是否恰好落在矩形的對角線上?同樣,如果時,點是否恰好落在上?讓我們通過計算來回答這個問題.如圖1.8建立直角坐標(biāo)系,以所在直線為軸,所在直線為軸,單位長度表示0.1米,于是有(0,0),(0,21),(8,21),(8,0),(0,13),(5,13),(3,8),(8,8).如何判斷和是否恰好落在直線上呢?一種辦法是,的坐標(biāo)代入直線的方程,看是否滿足方程;另一種辦法是分別計算,,的斜率,比較它們是否相等.下面用后一種方法進(jìn)行討論.設(shè)線段的斜率為,則有,,.比較之,由得,即的斜角大于的斜角,的斜角又大于的斜角,可見和都不在對角線上,它們分別落在的兩側(cè)(圖1.8):又由,得,,即,.可知將圖1.6中的四塊圖形按照圖1.7拼接時,在矩形對角線附近重疊了一個小平行四邊形(圖1.8).正是這一微小的重疊導(dǎo)致面積減少,減少的正是這個重疊的的面積.記(3,8)到對角線()的距離為,米,米,.把面積僅為0.01平方米的地毯拉成對角線長為米(約2.247米)的極細(xì)長的平行四邊形,在一個大矩形的對角線附近重疊了這么一點點,當(dāng)然很難覺察出來,魔術(shù)大是由正是利用了這一點蒙混過去,然而這一障眼法卻怎么也逃不過精細(xì)的數(shù)學(xué)計算這一“火眼金睛”.
如果我們把上述分割正方形和構(gòu)成矩形所涉及的四個數(shù),從小到大排列起來,即5,8,13,21,這列數(shù)有什么規(guī)律呢?相鄰兩數(shù)之和,正好是緊跟著的第三個數(shù).按照這個規(guī)律,5前面應(yīng)該是(8-5=)3,3前面應(yīng)是(5-3=)2,2前面應(yīng)是(3-2=)1,1前面應(yīng)是(2-1=)1,21后面應(yīng)為(13+21=)34,34后面應(yīng)為(21+34=)55,等等,于是得到數(shù)列1,1,2,3,5,8,13,21,34,55,…這個數(shù)列的特點是,它的任意相鄰三項中前兩項之和即為第三項.我們稱這個數(shù)列為斐波那契數(shù)列.魔術(shù)師的上述第一個地毯魔術(shù)中的四個數(shù)5,8,13,21只是斐波那契數(shù)列中的一段,從該數(shù)列中任意取出其他相鄰的四個數(shù),還能玩上述魔術(shù)嗎?為了使計算簡單一些,我們?nèi)〕鰯?shù)字更小的一段3,5,8,13來試一試.把邊長為8的正方形按圖1.9分成四塊,再拼成邊長為5和13的矩形(圖1.10).
這時圖形的面積由圖1.9的64變成了圖1.10的65,憑空增加了1個單位面積.通過完全類似的計算,我們發(fā)現(xiàn)圖1.10的尺寸是不合理的,實際上在矩形對角線附近,同樣會出現(xiàn)一個小平行四邊形.不過這次不是一個重疊的平行四邊形,而一具平行四邊形空隙(圖1.11).這就是拼成的矩形比原來的下方形面積“增大”的秘密所在.我們可以使用斐波那契數(shù)列的任何相鄰四項,來玩上述分割重拼的魔術(shù),我們發(fā)現(xiàn),正方形比重拼成的矩形,時而少一個單位面積,時而又多一個單位面積.這是因為重拼時,在矩形對角線附近,有時會重疊一個細(xì)長的平行四邊形(因此失去一個單位面積),有時又會出現(xiàn)一個細(xì)長的平行四邊形空隙(因此多出一個單位面積).面積何時變不,何時變大,有沒有規(guī)律呢?我們把斐波那契數(shù)列1,1,2,3,5,8,13,21,34,55,…記為
,,,,,…這里,,,,,…,且具有遞推關(guān)系考察以為邊長的正方形面積與以及為兩邊長的矩形面積之間的關(guān)系.隨著從小到大依次取2,3,4,5,…,我們得到當(dāng)時有,即;當(dāng)時有,即;當(dāng)時有,即;當(dāng)時有,即;從中我們發(fā)現(xiàn),隨著的奇偶變化,在上述關(guān)系式中,加1和減1交替出現(xiàn).對于數(shù)列的第項,當(dāng)是大于1的奇數(shù)時有,此時正方形的面積比矩形小1.寫成統(tǒng)一的表示式就是.將斐波那契數(shù)列前后相鄰兩項的比,作成一個新的數(shù)列,,,,,,,…該數(shù)列的極限是一個定數(shù)(無理數(shù)),這個數(shù)有很重要的應(yīng)用,而且還有一個非常好聽的名字,叫“黃金分割比”.
相傳早在歐幾里得之前,古希臘數(shù)學(xué)家歐多克索斯(Eudoxus,約公元前400~前347)提出并解決了下列按比例分線段的問題:“將線段分為不相等的兩段,使長段為全線段和短段的比例中項.”歐幾里得把它收入《幾何原本》之中,并稱它分線段為中外比.據(jù)說“黃金分割”這個華貴的名字是中世紀(jì)著名畫家達(dá)·芬奇取的,從此就廣為留傳,直至今日.對于長度為的線段,使的分點稱為“黃金分割點”(圖1.12).設(shè),則.即黃金分割比.從古希臘起直到今天,人們都認(rèn)為這種比例在造型藝術(shù)上具有很高的美學(xué)價值.在所有矩形中,兩邊之比符合黃金分割比的矩形是最優(yōu)美的.難怪日常生活中許多矩形用品和建筑中的矩形結(jié)構(gòu),往往是按黃金分割比設(shè)計的.甚至連人體自身的形體美,即最優(yōu)美的身段,也遵循著黃金分割比.據(jù)說“維納斯”雕像以及世界著名藝術(shù)珍品中的女神像,她們身體的腰以下部分的長度與整個身高的比,都近于0.618,于是人們就把這個比作為形體美的標(biāo)準(zhǔn).芭蕾舞女演員腰以下部分的身長與身高之比,一般約在0.58左右,因此在她們翩翩起舞時,總是腳尖點地,使腰以下部分的長度增長8~10厘米,以圖展示符合0.618身段比例的優(yōu)美體形(圖1.13),給觀眾以美的藝術(shù)享受.黃金分割比不僅在藝術(shù)上,而且在工程技術(shù)上也有重要意義.工廠里廣泛使用的“優(yōu)選法”,就是黃金分割比的一種應(yīng)用,因此有人干脆把優(yōu)選法稱為“0.618法”.在實際應(yīng)用時,黃金分割比可用斐波那契數(shù)列中相鄰前后兩項的比作為近似值來代替.越大,比值越近似黃金分割比.我們接著分析魔術(shù)師秋先生的第二個魔術(shù),其秘密在哪里呢?補洞用的那一小塊面積是從哪里來的呢?根據(jù)識破第一個魔術(shù)的經(jīng)驗,我們來考查拼成新的無洞正方形的各個尺寸(圖1.14)是否全都準(zhǔn)確無誤?這就要追查到分割有洞正方形的各個尺寸(圖1.15)是否全都準(zhǔn)確無誤碼?在圖1.15中分割正方形四邊的尺寸是取定的,用不著懷疑.值得懷疑的是中間的那條分割線,它的尺寸可靠嗎?其中是正確的,“”及“”對嗎?而它們正是新拼正方形兩邊上線段及的尺寸.如圖1.15所示,分別以直線和為軸和軸建立坐標(biāo)系,于是有(0,7),(12,12),(7,0),(7,3),要得到及的長度,只須求出點的坐標(biāo)即可.是直線與直線的交點.直線的方程是,即;直線的方程是.兩方程聯(lián)立解得交點的坐標(biāo)為(7,).于是得到,因而.這就是說,在新拼正方形(圖1.14)中,左邊上的線段的長不是7而是,右邊上的線段的長不是10而是.這樣,新拼圖形的左邊長為,右邊長為,上下兩邊,因此新拼圖形不是邊長為12的正方形,而是一個的長方形,比原來的有洞正方形稍微短了一點點(短1個單位長的).兩者的面積相差(單位面積),而這正好等于那個洞的面積.這個補洞的魔術(shù)之所以能夠成功,靠的就是兩者之差是一個很狹窄的細(xì)長條,不易被人覺察,但在精確的數(shù)學(xué)計算面前,秘密馬上就被揭穿了.我們也可以用平面幾何方法算出圖1.15中的線段實際長多少.過作的平行線交于(圖1.15),則~,于是有,即,得,于是.輪換對稱不等式的證明技巧輪換對稱不等式形式優(yōu)美,證明技巧很多,但規(guī)律難尋。本文介紹利用基本不等式等號成立的條件湊項證明,只要領(lǐng)悟添項的技巧,這類不等式完全可以程式化證明,供參考。一、湊項升冪法已知,且,求證:分析:由于當(dāng)時,上述不等式的“=”成立,于是。證明:因為,所以,同理,,上述三式相加,并將代入化簡即得證。二、湊項降冪法證明Cauchy不等式證明:設(shè),則,所以,即。三、湊項去分母法例3設(shè)是正數(shù),且,求證:(1990年第24屆全蘇數(shù)學(xué)奧林匹克
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年(全新版)中國沉香市場發(fā)展現(xiàn)狀及前景規(guī)劃研究報告
- 2025-2030年(全新版)中國住宅產(chǎn)業(yè)化行業(yè)發(fā)展?fàn)顩r規(guī)劃研究報告
- 2025-2030年中國高效智能換熱機組行業(yè)發(fā)展現(xiàn)狀及投資策略預(yù)測研究報告
- 二零二五年度房產(chǎn)股東合作協(xié)議書范本(含利潤分成)3篇
- 二零二五年度9A文勞務(wù)合作協(xié)議書(綠色環(huán)保工程專版)3篇
- 公交站點電動汽車充電服務(wù)考核試卷
- 2025年度合伙退出合同:股權(quán)回購與收益分配協(xié)議
- 塑料制品在包裝機械中的應(yīng)用考核試卷
- 保險營銷策略與渠道拓展考核試卷
- 2025-2030全球有機油田緩蝕劑行業(yè)調(diào)研及趨勢分析報告
- 【公開課】同一直線上二力的合成+課件+2024-2025學(xué)年+人教版(2024)初中物理八年級下冊+
- GB/T 10752-2005船用鋼管對焊接頭
- 酒店婚宴銷售年度工作計劃4篇
- 健康教育工作考核記錄表
- 裝飾工程施工技術(shù)ppt課件(完整版)
- SJG 05-2020 基坑支護(hù)技術(shù)標(biāo)準(zhǔn)-高清現(xiàn)行
- 汽車維修價格表
- 10KV供配電工程施工組織設(shè)計
- 終端攔截攻略
- 藥物外滲處理及預(yù)防【病房護(hù)士安全警示教育培訓(xùn)課件】--ppt課件
評論
0/150
提交評論