2024年甘肅省蘭州市市區(qū)片八年級下冊數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第1頁
2024年甘肅省蘭州市市區(qū)片八年級下冊數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第2頁
2024年甘肅省蘭州市市區(qū)片八年級下冊數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第3頁
2024年甘肅省蘭州市市區(qū)片八年級下冊數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第4頁
2024年甘肅省蘭州市市區(qū)片八年級下冊數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024年甘肅省蘭州市市區(qū)片八年級下冊數(shù)學期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,在中,平分,,則的周長為()A.4 B.6 C.8 D.122.下列命題是假命題的是()A.兩直線平行,同位角相等 B.兩組對角分別相等的四邊形是平行四邊形C.若,則 D.若,則3.如圖,在?ABCD中,E為邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F,若∠B=52°,∠DAE=20°,則∠AED′的大小為()A.110° B.108° C.105° D.100°4.如圖所示,線段AC的垂直平分線交線段AB于點D,∠A=40°,則∠BDC=()A.40° B.80° C.100° D.120°5.甲乙兩城市相距600千米,一輛貨車和一輛客車均從甲城市出發(fā)勻速行駛至乙城市.已知貨車出發(fā)1小時后客車再出發(fā),先到終點的車輛原地休息.在汽車行駛過程中,設(shè)兩車之間的距離為s(千米),客車出發(fā)的時間為t(小時),它們之間的關(guān)系如圖所示,則下列結(jié)論錯誤的是()A.貨車的速度是60千米/小時B.離開出發(fā)地后,兩車第一次相遇時,距離出發(fā)地150千米C.貨車從出發(fā)地到終點共用時7小時D.客車到達終點時,兩車相距180千米6.二次根式在實數(shù)范圍內(nèi)有意義,那么的取值范圍是()A. B. C. D.7.關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是()A. B. C.且 D.且8.分式有意義,則的取值范圍為()A. B. C.且 D.為一切實數(shù)9.已知一組數(shù)據(jù)45,51,54,52,45,44,則這組數(shù)據(jù)的眾數(shù)、中位數(shù)分別為()A.45,48 B.44,45 C.45,51 D.52,5310.在平面直角坐標系中,直線與y軸交于點A,如圖所示,依次正方形,正方形,……,正方形,且正方形的一條邊在直線m上,一個頂點x軸上,則正方形的面積是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,一根垂直于地面的木桿在離地面高3m處折斷,若木桿折斷前的高度為8m,則木桿頂端落在地面的位置離木桿底端的距離為________m.12.如圖,在矩形ABCD中,AB=1,BC=7,將矩形ABCD繞點C逆時針旋轉(zhuǎn)90°得到矩形A′B′CD′,點E、F分別是BD、B′D′的中點,則EF的長度為________cm.13.如圖,在四邊形ABCD中,AD∥BC,且AD=12cm.點P從點A出發(fā),以3cm/s的速度在射線AD上運動;同時,點Q從點C出發(fā),以1cm/s的速度在射線CB上運動.運動時間為t,當t=______秒(s)時,點P、Q、C、D構(gòu)成平行四邊形.14.如圖,四邊形ABCD、DEFG都是正方形,AB與CG交于點下列結(jié)論:;;;;其中正確的有______;15.化簡的結(jié)果為_____.16.如圖,?ABCD的頂點B在矩形AEFC的邊EF上,點B與點E、F不重合,若ΔACD的面積為4,則圖中陰影部分兩個三角形的面積和為17.已知反比例函數(shù)y=的圖像都過A(1,3)則m=______.18.函數(shù)與的圖象如圖所示,則的值為____.三、解答題(共66分)19.(10分)如圖,直線y=x+b,分別交x軸,y軸于點A、C,點P是直線AC與雙曲線y=在第一象限內(nèi)的交點,過點P作PB⊥x軸于點B,若OB=2,PB=3.(1)填空:k=;(2)求△ABC的面積;(3)求在第一象限內(nèi),當x取何值時,一次函數(shù)的值小于反比例函數(shù)的值?20.(6分)如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點E(3,4).(1)求反比例函數(shù)的解析式;(2)反比例函數(shù)的圖象與線段BC交于點D,直線過點D,與線段AB相交于點F,求點F的坐標;(3)連接OF,OE,探究∠AOF與∠EOC的數(shù)量關(guān)系,并證明.(4)若點P是x軸上的動點,點Q是(1)中的反比例函數(shù)在第一象限圖象上的動點,且使得△PDQ為等腰直角三角形,請求出點P的坐標.21.(6分)如圖1在正方形ABCD中,O是AD的中點,點P從A點出發(fā)沿A→B→C→D的路線移動到點D時停止,出發(fā)時以a單位/秒勻速運動:同時點Q從D出發(fā)沿D→C→B→A的路線勻速運動,移動到點A時停止,出發(fā)時以b單位/秒運動,兩點相遇后點P運動速度變?yōu)閏單位/秒運動,點Q運動速度變?yōu)閐單位/秒運動:圖2是射線OP隨P點運動在正方形ABCD中掃過的圖形的面積y1與時間t的函數(shù)圖象,圖3是射線OQ隨Q點運動在正方形ABCD中掃過的圖形的面積y2與時間(1)正方形ABCD的邊長是______.(2)求P,Q相遇后∠POQ在正方形中所夾圖形面積S與時間t的函數(shù)關(guān)系式.22.(8分)如圖,四邊形是菱形,對角線,相交于點,且.(1)菱形的周長為;(2)若,求的長.23.(8分)已知:如圖,在菱形ABCD中,點E,O,F(xiàn)分別是邊AB,AC,AD的中點,連接CE、CF、OE、OF.(1)求證:△BCE≌△DCF;(2)當AB與BC滿足什么條件時,四邊形AEOF正方形?請說明理由.24.(8分)在正方形ABCD中,E是△ABD內(nèi)的點,EB=EC.(1)如圖1,若EB=BC,求∠EBD的度數(shù);(2)如圖2,EC與BD交于點F,連接AE,若,試探究線段FC與BE之間的等量關(guān)系,并說明理由.25.(10分)感知:如圖(1),已知正方形ABCD和等腰直角△EBF,點E在正方形BC邊上,點F在AB邊的延長線上,∠EBF=90°,連結(jié)AE、CF.易證:∠AEB=∠CFB(不需要證明).探究:如圖(2),已知正方形ABCD和等腰直角△EBF,點E在正方形ABCD內(nèi)部,點F在正方形ABCD外部,∠EBF=90°,連結(jié)AE、CF.求證:∠AEB=∠CFB應(yīng)用:如圖(3),在(2)的條件下,當A、E、F三點共線時,連結(jié)CE,若AE=1,EF=2,則CE=______.26.(10分)定向越野作為一種新興的運動項目,深受人們的喜愛.這種定向運動是利用地圖和指北針到訪地圖上所指示的各個點標,以最短時間按序到達所有點標者為勝.下面是我區(qū)某校進行定向越野活動中,中年男子組的成績(單位:分:秒).9:0114:459:4619:2211:2018:4711:4012:3211:5213:4522:2715:0017:3013:2218:3410:4519:2416:2621:3315:3119:5014:2715:5516:0720:4312:1321:4114:5711:3912:4512:5715:3113:2014:5014:579:4112:1314:2712:2512:38例如,用時最少的趙老師的成績?yōu)?:01,表示趙老師的成績?yōu)?分1秒.以下是根據(jù)某校進行定向越野活動中,中年男子組的成績中的數(shù)據(jù),繪制的統(tǒng)計圖表的一部分.某校中年男子定向越野成績分段統(tǒng)計表分組/分頻數(shù)頻率9≤x<1140.111≤x<13b0.27513≤x<1590.22515≤x<176d17≤x<1930.07519≤x<2140.121≤x<2330.075合計ac(1)這組數(shù)據(jù)的極差是____________;(2)上表中的a=____________,b=____________,c=____________,d=____________;(3)補全頻數(shù)分布直方圖.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】

在平行四邊形ABCD中,AC平分∠DAB,則四邊形ABCD為菱形,根據(jù)菱形的性質(zhì)求周長.【詳解】解:∵在中,平分,∴四邊形ABCD為菱形,∴四邊形ABCD的周長=4×2=1.故選C.【點睛】本題考查了菱形的判定定理,注意:菱形的判定定理有:①有一組鄰邊相等的平行四邊形是菱形,②四條邊都相等的四邊形是菱形,③對角線互相垂直的平行四邊形是菱形,④對角線平分一組對角的平行四邊形是菱形.2、D【解析】

根據(jù)平行線的性質(zhì)、平行四邊形的判定、實數(shù)的性質(zhì)即可判斷.【詳解】A.兩直線平行,同位角相等,正確B.兩組對角分別相等的四邊形是平行四邊形,正確C.若,則,正確D.若>0,則,錯誤故選D.【點睛】此題主要考查命題的真假,解題的關(guān)鍵是熟知根據(jù)平行線的性質(zhì)、平行四邊形的判定、實數(shù)的性質(zhì).3、B【解析】

由平行四邊形的性質(zhì)可得∠B=∠D=52°,由三角形的內(nèi)角和定理可求∠DEA的度數(shù),由折疊的性質(zhì)可求∠AED'=∠DEA=108°.【詳解】∵四邊形ABCD是平行四邊形,∴∠B=∠D=52°,且∠DAE=20°,∴∠DEA=180°﹣∠D=∠DAE=108°,∵將△ADE沿AE折疊至△AD′E處,∴∠AED'=∠DEA=108°.故選:B.【點睛】本題主要考查平行四邊形的性質(zhì),三角形的內(nèi)角和定理以及折疊的性質(zhì),掌握折疊的性質(zhì)是解題的關(guān)鍵.4、B【解析】

根據(jù)線段垂直平分線的性質(zhì)得到DA=DC,根據(jù)等腰三角形的性質(zhì)得到∠DCA=∠A,根據(jù)三角形的外角的性質(zhì)計算即可.【詳解】解:∵DE是線段AC的垂直平分線,∴DA=DC,∴∠DCA=∠A=40°,∴∠BDC=∠DCA+∠A=80°,故選:B.【點睛】本題考查的是線段垂直平分線的性質(zhì)和三角形的外角的性質(zhì),掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關(guān)鍵.5、C【解析】

通過函數(shù)圖象可得,貨車出發(fā)1小時走的路程為60千米,客車到達終點所用的時間為6小時,根據(jù)行程問題的數(shù)量關(guān)系可以求出貨車和客車的速度,利用數(shù)形結(jié)合思想及一元一次方程即可解答.【詳解】解:由函數(shù)圖象,得:貨車的速度為60÷1=60千米/小時,客車的速度為600÷6=100千米/小時,故A錯誤;設(shè)客車離開起點x小時后,甲、乙兩人第一次相遇,根據(jù)題意得:100x=60+60x,解得:x=1.5,∴離開起點后,兩車第一次相遇時,距離起點為:1.5×100=150(千米),故B錯誤;甲從起點到終點共用時為:600÷60=10(小時),故C正確;∵客車到達終點時,所用時間為6小時,貨車先出發(fā)1小時,∴此時貨車行走的時間為7小時,∴貨車走的路程為:7×60=420(千米),∴客車到達終點時,兩車相距:600﹣420=180(千米),故D錯誤;故選C.【點睛】本題主要考查了函數(shù)圖象的讀圖能力,要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實際意義得到正確的結(jié)論.6、A【解析】

二次根式有意義,被開方數(shù)為非負數(shù),即x-2≥0,解不等式求x的取值范圍.【詳解】∵在實數(shù)范圍內(nèi)有意義,∴x?2?0,解得x?2.故選A.【點睛】此題考查二次根式有意義的條件,解題關(guān)鍵在于掌握運算法則7、D【解析】

根據(jù)方程有兩個不相等的實數(shù)根,則,結(jié)合一元二次方程的定義,即可求出m的取值范圍.【詳解】解:∵一元二次方程有兩個不相等的實數(shù)根,∴解得:,∵,∴的取值范圍是:且;故選:D.【點睛】總結(jié)一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.8、B【解析】

直接利用分式有意義則分母不等于零進而得出答案.【詳解】分式有意義,

則x-1≠0,

解得:x≠1.

故選:B.【點睛】此題考查分式有意義的條件,正確把握分式的定義是解題關(guān)鍵.9、A【解析】

先把原數(shù)據(jù)按由小到大排列,然后根據(jù)眾數(shù)、中位數(shù)的定義求解.【詳解】數(shù)據(jù)從小到大排列為:44,45,45,51,52,54,所以這組數(shù)據(jù)的眾數(shù)為45,中位數(shù)為×(45+51)=48,故選A.【點睛】本題考查了眾數(shù)與中位數(shù),熟練掌握眾數(shù)與中位數(shù)的概念以及求解方法是解題的關(guān)鍵.一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).一組數(shù)據(jù)按從小到大的順序排列,位于最中間的數(shù)(或中間兩個數(shù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù).10、B【解析】

由一次函數(shù),得出點A的坐標為(0,1),求出正方形M1的邊長,即可求出正方形M1的面積,同理求出正方形M2的面積,即可推出正方形的面積.【詳解】一次函數(shù),令x=0,則y=1,∴點A的坐標為(0,1),∴OA=1,∴正方形M1的邊長為,∴正方形M1的面積=,∴正方形M1的對角線為,∴正方形M2的邊長為,∴正方形M2的面積=,同理可得正方形M3的面積=,則正方形的面積是,故選B.【點睛】本題考查一次函數(shù)圖象上點的坐標特征、規(guī)律型,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中面積之間的關(guān)系,運用數(shù)形結(jié)合思想解答.二、填空題(每小題3分,共24分)11、4【解析】

由題意得,在直角三角形中,知道了兩直角邊,運用勾股定理即可求出斜邊,從而得出木桿頂端落在地面的位置離木桿底端的距離.【詳解】一顆垂直于地面的木桿在離地面處折斷,木桿折斷前的高度為,木桿頂端落在地面的位置離木桿底端的距離為.故答案為:.【點睛】此題考查了勾股定理的應(yīng)用,主要考查學生對勾股定理在實際生活中的運用能力.12、5【解析】【分析】如圖,連接AC、A′C,AA′,由矩形的性質(zhì)和勾股定理求出AC長,由矩形的性質(zhì)得出E是AC的中點,F(xiàn)是A′C的中點,證出EF是△ACA′的中位線,由三角形中位線定理得出EF=AA′,由等腰直角三角形的性質(zhì)得出AA′=AC,即可得出結(jié)果.【詳解】如圖,連接AC、A′C,AA′,∵矩形ABCD繞點C逆時針旋轉(zhuǎn)90°得到矩形A′B′CD′,∴∠ACA′=90°,∠ABC=90°,∴AC=,AC=BD=A′C=B′D′,AC與BD互相平分,A′C與B′D′互相平分,∵點E、F分別是BD、B′D′的中點,∴E是AC的中點,F(xiàn)是A′C的中點,∵∠ACA′=90°,∴△ACA′是等腰直角三角形,∴AA′=AC==10,∴EF=AA′=5,故答案為5.【點睛】本題考查了矩形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、勾股定理、等腰直角三角形的判定與性質(zhì),三角形的中位線定理,熟練掌握矩形的性質(zhì),由三角形的中位線定理求出EF長是解決問題的關(guān)鍵.13、3或6【解析】

根據(jù)點P的位置分類討論,分別畫出對應(yīng)的圖形,根據(jù)平行四邊形的對邊相等列出方程即可求出結(jié)論.【詳解】解:當P運動在線段AD上運動時,AP=3t,CQ=t,∴DP=AD-AP=12-3t,∵四邊形PDCQ是平行四邊形,∴PD=CQ,∴12-3t=t,∴t=3秒;當P運動到AD線段以外時,AP=3t,CQ=t,∴DP=3t-12,∵四邊形PDCQ是平行四邊形,∴PD=CQ,∴3t-12=t,∴t=6秒,故答案為:3或6【點睛】此題考查的是平行四邊形與動點問題,掌握平行四邊形的對應(yīng)邊相等和分類討論的數(shù)學思想是解決此題的關(guān)鍵.14、

【解析】

根據(jù)正方形的性質(zhì)可得,,,然后求出,再利用“邊角邊”證明和全等,根據(jù)全等三角形對應(yīng)邊相等可得,判定正確;根據(jù)全等三角形對應(yīng)角相等可得,再求出,然后求出,判定正確;根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,判定正確;求出點D、E、G、M四點共圓,再根據(jù)同弧所對的圓周角相等可得,判定正確;得出,判定GE錯誤.【詳解】四邊形ABCD、DEFG都是正方形,,,,,即,在和中,,≌,,故正確;,,,,故正確;是正方形DEFG的對角線的交點,,,故正確;,點D、E、G、M四點共圓,,故正確;,,不成立,故錯誤;綜上所述,正確的有.故答案為.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),以及四點共圓,熟練掌握各性質(zhì)是解題的關(guān)鍵.15、x【解析】

先把兩分數(shù)化為同分母的分數(shù),再把分母不變,分子相加減即可.【詳解】,故答案為x.16、1【解析】

根據(jù)平行四邊形的性質(zhì)求出AD=BC,DC=AB,證△ADC≌△CBA,推出△ABC的面積是1,求出AC×AE=8,即可求出陰影部分的面積.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC,DC=AB,∵在△ADC和△CBA中AD=BCDC=AB∴△ADC≌△CBA,∵△ACD的面積為1,∴△ABC的面積是1,即12AC×AE=8,∴陰影部分的面積是8﹣1=1,故答案為1.【點睛】本題考查了矩形性質(zhì),平行四邊形性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用,主要考查學生運用面積公式進行計算的能力,題型較好,難度適中.17、1.【解析】

把點A(1,1)代入函解析式即可求出m的值.【詳解】解:把點A(1,1)代入函解析式得1=,解得m=1.

故答案為:1.【點睛】本題考查反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解題的關(guān)鍵.18、1【解析】

將x=1代入可得交點縱坐標的值,再將交點坐標代入y=kx可得k.【詳解】解:把x=1代入得:y=1,∴與的交點坐標為(1,1),

把x=1,y=1代入y=kx得k=1.

故答案是:1.【點睛】本題主要考查兩條直線的交點問題,解題的關(guān)鍵是熟練掌握待定系數(shù)法求函數(shù)解析式.三、解答題(共66分)19、(1)6;(1)6;(3)0<x<1【解析】(1)∵PB⊥x軸于點B,OB=1,PB=3,∴P(1,3),∵點P是直線AC與雙曲線y=在第一象限內(nèi)的交點,∴k=1×3=6,故答案為6;(1)∵直線y=x+b經(jīng)過點P(1,3),∴×1+b=3,∴b=1,即y=x+1,令x=0,解得y=1,即C(0,1);令y=0,解得x=﹣4,即A(﹣4,0);∴AB=6,CO=1,∴S△ABC=×6×1=6;(3)由圖象及點P的橫坐標為1,可知:在第一象限內(nèi),一次函數(shù)的值小于反比例函數(shù)的值時,x的范圍為0<x<1.20、(1)y=;(2)點F的坐標為(2,4);(3)∠AOF=∠EOC,理由見解析;(4)P的坐標是(,0)或(-5,0)或(,0)或(5,0)【解析】

(1)設(shè)反比例函數(shù)的解析式為y=,把點E(3,4)代入即可求出k的值,進而得出結(jié)論;(2)由正方形AOCB的邊長為4,故可知點D的橫坐標為4,點F的縱坐標為4,由于點D在反比例函數(shù)的圖象上,所以點D的縱坐標為3,即D(4,3),由點D在直線上可得出b的值,進而得出該直線的解析式,再把y=4代入直線的解析式即可求出點F的坐標;(3)在CD上取CG=AF=2,連接OG,連接EG并延長交x軸于點H,由全等三角形的判定定理可知△OAF≌△OCG,△EGB≌△HGC(ASA),故可得出EG=HG,設(shè)直線EG的解析式為y=mx+n,把E(3,4),G(4,2)代入即可求出直線EG的解析式,故可得出H點的坐標,在Rt△AOF中,AO=4,AE=3,根據(jù)勾股定理得OE=5,可知OC=OE,即OG是等腰三角形底邊EF上的中線,所以O(shè)G是等腰三角形頂角的平分線,由此即可得出結(jié)論;(4)分△PDQ的三個角分別是直角,三種情況進行討論,作DK⊥x軸,作QR⊥x軸,作DL⊥QR,于點L,即可構(gòu)造全等的直角三角形,設(shè)出P的坐標,根據(jù)點在圖象上,則一定滿足函數(shù)的解析式即可求解,【詳解】解:(1)設(shè)反比例函數(shù)的解析式y(tǒng)=,∵反比例函數(shù)的圖象過點E(3,4),∴4=,即k=12,∴反比例函數(shù)的解析式y(tǒng)=;(2)∵正方形AOCB的邊長為4,∴點D的橫坐標為4,點F的縱坐標為4,∵點D在反比例函數(shù)的圖象上,∴點D的縱坐標為3,即D(4,3),∵點D在直線y=﹣x+b上,∴3=﹣×4+b,解得:b=5,∴直線DF為y=﹣x+5,將y=4代入y=﹣x+5,得4=﹣x+5,解得:x=2,∴點F的坐標為(2,4),(3)∠AOF=∠EOC,理由為:證明:在CD上取CG=AF=2,連接OG,連接EG并延長交x軸于點H,,∴△OAF≌△OCG(SAS),∴∠AOF=∠COG,,∴△EGB≌△HGC(ASA),∴EG=HG,設(shè)直線EG:y=mx+n,∵E(3,4),G(4,2),∴,解得,∴直線EG:y=﹣2x+10,令y=﹣2x+10=0,得x=5,∴H(5,0),OH=5,在Rt△AOE中,AO=4,AE=3,根據(jù)勾股定理得OE=5,∴OH=OE,∴OG是等腰三角形底邊EH上的中線,∴OG是等腰三角形頂角的平分線,∴∠EOG=∠GOH,∴∠EOG=∠GOC=∠AOF,即∠AOF=∠EOC;(4)當Q在D的右側(cè)(如圖1),且∠PDQ=90°時,作DK⊥x軸,作QL⊥DK,于點L,則△DPK≌△QDK,設(shè)P的坐標是(a,0),則KP=DL=4-a,QL=DK=3,則Q的坐標是(4+3,4-3+a)即(7,-1+a),把(7,-1+a)代入y=得:7(-1+a)=12,解得:a=,則P的坐標是(,0);當Q在D的左側(cè)(如圖2),且∠PDQ=90°時,作DK⊥x軸,作QR⊥x軸,作DL⊥QR,于點L,則△QDL≌△PDK,則DK=DL=3,設(shè)P的坐標是b,則PK=QL=4-b,則QR=4-b+3=7-b,OR=OK-DL=4-3=1,則Q的坐標是(1,7-b),代入y=得:b=-5,則P的坐標是(-5,0);當Q在D的右側(cè)(如圖3),且∠DQP=90°時,作DK⊥x軸,作QR⊥x軸,作DL⊥QR,于點L,則△QDL≌△PQK,則DK=DL=3,設(shè)Q的橫坐標是c,則縱坐標是,則QK=QL=,又∵QL=c-4,∴c-4=,解得:c=-2(舍去)或6,則PK=DL=DR-LR=DR-QK=3-=1,∴OP=OK-PK=6-1=5,則P的坐標是(5,0);當Q在D的左側(cè)(如圖3),且∠DQP=90°時,不成立;當∠DPQ=90°時,(如圖4),作DK⊥x軸,作QR⊥x軸,則△DPR≌△PQK,∴DR=PK=3,RP=QK,設(shè)P的坐標是(d,0),則RK=QK=d-4,則OK=OP+PK=d+3,則Q的坐標是(d+3,d-4),代入y=得:(d+3)(d-4)=12,解得:d=或(舍去),則P的坐標是(,0),綜上所述,P的坐標是(,0)或(-5,0)或(,0)或(5,0),【點睛】本題是反比例函數(shù)綜合題,掌握待定系數(shù)法求解析式,反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.21、(1)6;(2)見詳解.【解析】

(1)從圖3中可以看出射線OQ前面6秒掃過的面積為9,則可以得到12×12AD?AD=9(2)仔細觀察函數(shù)圖象可知點P點Q是在點C處相遇,并由(1)中得到的正方形邊長可求得,相遇前后P,Q的速度,再畫出圖形列出式子求解即可.【詳解】解:(1)由圖3可知△OCD的面積=9.∵O是AD的中點,∴OD=12∵四邊形ABCD是正方形,∴AD=CD,∠ODC=90°,∴12AD?1解得:AD=6.故答案為6.(2)觀察圖2和圖3可知P,Q兩點是在點C處相遇,且相遇前P,Q的速度分別為2和1.相遇后P,Q的運動速度分別為1和3.①當6≤t<8時,如圖1,S=正方形的面積-△POD的面積-梯形OABQ的面積.∵PC=t-6,CQ=3(t-6)=3t-18.∴PD=12-t,BQ=24-3t.∴S=36-32=36-18+32=212②當8≤t≤10時,如圖2,S=正方形的面積-△POD的面積-△AOQ的面積.∵PC=t-6,BQ=3(t-8)=3t-24,∴PD=12-t,AQ=30-3t.∴S=36-32(12-t)-3=36-18+32t-45+9=6t-27.當10<t≤12時,如圖3.S=正方形的面積-△POD的面積.∵PC=t-6,∴PD=12-t,∴S=36-32=36-18+32=32綜上所述,P,Q相遇后∠POQ在正方形中所夾圖形面積S與時間t的函數(shù)關(guān)系式為:當6≤t<8時S=212t-63;當8≤t≤10時,S=6t-27;當10<t≤12時S=3【點睛】本題為一次函數(shù)綜合運用題,涉及到圖形的面積計算等,此類題目關(guān)鍵是,弄清楚不同時間段動點所在的位置,確定線段相應(yīng)的長度,進而求解.22、(1)1;(2)AC=【解析】

(1)由菱形的四邊相等即可求出其周長;(2)利用勾股定理可求出AO的長,進而解答即可.【詳解】解:(1)∵四邊形ABCD是菱形,AB=2,∴菱形ABCD的周長為:1;故答案為1.(2)∵四邊形ABCD是菱形,BD=2,AB=2,∴AC⊥BD,BO=1,∴AO=,∴AC=2AO=.【點睛】本題主要考查菱形的性質(zhì),能夠利用勾股定理求出AO的長是解題關(guān)鍵,此題難度一般.23、(1)證明見解析;(2)AB⊥BC時,四邊形AEOF正方形.【解析】

(1)根據(jù)中點的定義及菱形的性質(zhì)可得BE=DF,∠B=∠D,BC=CD,利用SAS即可證明△BCE≌△DCF;(2)由中點的定義可得OE為△ABC的中位線,根據(jù)三角形中位線的性質(zhì)可得OE//BC,根據(jù)正方形的性質(zhì)可得∠AEO=90°,根據(jù)平行線的性質(zhì)可得∠ABC=∠AEO=90°,即可得AB⊥BC,可得答案.【詳解】(1)∵四邊形ABCD是菱形,點E,O,F(xiàn)分別是邊AB,AC,AD的中點,∴AB=BC=CD=AD,∠B=∠D,∵點E、F分別是邊AB、AD的中點,∴BE=AB,DF=AD,∴BE=DF,在△BCE和△DCF中,,∴△BCE≌△DCF.(2)AB⊥BC,理由如下:∵四邊形AEOF是正方形,∴∠AEO=90°,∵點E、O分別是邊AB、AC的中點,∴OE為△ABC的中位線,∴OE//BC,∴∠B=∠AEO=90°,∴AB⊥BC.【點睛】本題考查菱形的性質(zhì)、全等三角形的判定及正方形的性質(zhì),菱形的四條邊都相等,對角相等;正方形的四個角都是直角;熟練掌握菱形和正方形的性質(zhì)是解題關(guān)鍵.24、(1)15°;(2)【解析】

(1)根據(jù)等邊三角形的性質(zhì)得∠EBC=60°,根據(jù)正方形的一條對角線平分內(nèi)角可得∠CBD=45°,根據(jù)角的和與差可得結(jié)論;

(2)連接AF,證明△ABF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論