版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年重慶市字水中學(xué)高考沖刺數(shù)學(xué)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在直三棱柱中,,,點(diǎn)分別是線段的中點(diǎn),,分別記二面角,,的平面角為,則下列結(jié)論正確的是()A. B. C. D.2.設(shè)數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,,且,則()A.128 B.65 C.64 D.633.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(diǎn)(2,1)對(duì)稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.44.已知六棱錐各頂點(diǎn)都在同一個(gè)球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.5.計(jì)算等于()A. B. C. D.6.已知曲線,動(dòng)點(diǎn)在直線上,過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,則直線截圓所得弦長(zhǎng)為()A. B.2 C.4 D.7.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學(xué)期望,則的取值范圍為()A. B. C. D.8.已知直四棱柱的所有棱長(zhǎng)相等,,則直線與平面所成角的正切值等于()A. B. C. D.9.我國(guó)古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個(gè)問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.110.已知函數(shù),若,則a的取值范圍為()A. B. C. D.11.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.12.函數(shù)的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左右焦點(diǎn)為,過作軸的垂線與相交于兩點(diǎn),與軸相交于.若,則雙曲線的離心率為_________.14.已知數(shù)列的各項(xiàng)均為正數(shù),記為的前n項(xiàng)和,若,,則________.15.設(shè)向量,,且,則_________.16.在中,角,,所對(duì)的邊分別邊,且,設(shè)角的角平分線交于點(diǎn),則的值最小時(shí),___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.18.(12分)如圖,已知,分別是正方形邊,的中點(diǎn),與交于點(diǎn),,都垂直于平面,且,,是線段上一動(dòng)點(diǎn).(1)當(dāng)平面,求的值;(2)當(dāng)是中點(diǎn)時(shí),求四面體的體積.19.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實(shí)數(shù)的取值范圍.20.(12分)我們稱n()元有序?qū)崝?shù)組(,,…,)為n維向量,為該向量的范數(shù).已知n維向量,其中,,2,…,n.記范數(shù)為奇數(shù)的n維向量的個(gè)數(shù)為,這個(gè)向量的范數(shù)之和為.(1)求和的值;(2)當(dāng)n為偶數(shù)時(shí),求,(用n表示).21.(12分)已知橢圓經(jīng)過點(diǎn),離心率為.(1)求橢圓的方程;(2)過點(diǎn)的直線交橢圓于、兩點(diǎn),若,在線段上取點(diǎn),使,求證:點(diǎn)在定直線上.22.(10分)如圖,四棱錐中,底面是菱形,對(duì)角線交于點(diǎn)為棱的中點(diǎn),.求證:(1)平面;(2)平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
過點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法求解二面角的余弦值得答案.【詳解】解:因?yàn)?,,所以,即過點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,,,,0,,,1,,,,,,,設(shè)平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點(diǎn)睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.2、D【解析】
根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項(xiàng)和公式求.【詳解】因?yàn)?,所以,所以,所以?shù)列是等比數(shù)列,又因?yàn)?,所以?故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項(xiàng)和公式,還考查了運(yùn)算求解的能力,屬于中檔題.3、C【解析】
根據(jù)對(duì)稱性即可求出答案.【詳解】解:∵點(diǎn)(5,f(5))與點(diǎn)(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(diǎn)(2,1)對(duì)稱,所以f(5)+f(﹣1)=2,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的對(duì)稱性的應(yīng)用,屬于中檔題.4、D【解析】
由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因?yàn)椋?,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點(diǎn)睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計(jì)算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.5、A【解析】
利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對(duì)數(shù)運(yùn)算,求得所求表達(dá)式的值.【詳解】原式.故選:A【點(diǎn)睛】本小題主要考查誘導(dǎo)公式,考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.6、C【解析】
設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進(jìn)而得到切線方程,將點(diǎn)坐標(biāo)代入切線方程,抽象出直線方程,且過定點(diǎn)為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過點(diǎn),所以,即都在直線上,所以直線的方程為,恒過定點(diǎn),即直線過圓心,則直線截圓所得弦長(zhǎng)為4.故選:C.【點(diǎn)睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點(diǎn)所在直線求解是解題的關(guān)鍵,屬于中檔題.7、A【解析】
根據(jù)題意,分別求出再根據(jù)離散型隨機(jī)變量期望公式進(jìn)行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點(diǎn)睛】本題考查離散型隨機(jī)變量期望的求解,易錯(cuò)點(diǎn)為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功8、D【解析】
以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點(diǎn),以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.設(shè),則,.設(shè)平面的法向量為,則取,得.設(shè)直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點(diǎn)睛】本題考查了向量法求解線面角,考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、B【解析】
將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實(shí)際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項(xiàng)和為,,,求的值.因?yàn)?,解得,,解得.故選B.【點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問題很有幫助.10、C【解析】
求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.11、A【解析】
將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項(xiàng).【詳解】由于等差數(shù)列中,所以,化簡(jiǎn)得,所以為.故選:A【點(diǎn)睛】本小題主要考查等差數(shù)列的基本量計(jì)算,屬于基礎(chǔ)題.12、A【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯(cuò)誤選項(xiàng),從而得出正確選項(xiàng).【詳解】因?yàn)?,所以是偶函?shù),排除C和D.當(dāng)時(shí),,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點(diǎn)睛】本小題主要考查函數(shù)圖像的識(shí)別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知可得,結(jié)合雙曲線的定義可知,結(jié)合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點(diǎn)睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關(guān)鍵是根據(jù)幾何關(guān)系,分析出.關(guān)于圓錐曲線的問題,一般如果能結(jié)合幾何性質(zhì),可大大減少計(jì)算量.14、127【解析】
已知條件化簡(jiǎn)可化為,等式兩邊同時(shí)除以,則有,通過求解方程可解得,即證得數(shù)列為等比數(shù)列,根據(jù)已知即可解得所求.【詳解】由..故答案為:.【點(diǎn)睛】本題考查通過遞推公式證明數(shù)列為等比數(shù)列,考查了等比的求和公式,考查學(xué)生分析問題的能力,難度較易.15、【解析】
根據(jù)向量的數(shù)量積的計(jì)算,以及向量的平方,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:且由所以故答案為:【點(diǎn)睛】本題考查向量的坐標(biāo)計(jì)算,主要考查計(jì)算,屬基礎(chǔ)題.16、【解析】
根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因?yàn)?,則,由余弦定理得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),又因?yàn)椋?,所?故答案為:.【點(diǎn)睛】本題考查余弦定理和正弦定理的應(yīng)用,以及基本不等式求最值,考查計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)利用正弦定理求得,由此得到,結(jié)合證得平面,由此證得.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值,再轉(zhuǎn)化為正弦值.【詳解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,,設(shè)平面的法向量為,由可得:,令,則,設(shè)平面的法向量為,由可得:,令,則,設(shè)二面角的平面角為,由圖可知為鈍角,則,,故二面角的正弦值為.【點(diǎn)睛】本小題主要考查線線垂直的證明,考查空間向量法求二面角,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1).(2)【解析】
(1)利用線面垂直的性質(zhì)得出,進(jìn)而得出,利用相似三角形的性質(zhì),得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進(jìn)而得出四面體的體積,計(jì)算出,,即可得出四面體的體積.【詳解】(1)因?yàn)槠矫?,平面,所以又因?yàn)?,都垂直于平面,所以又,分別是正方形邊,的中點(diǎn),且,所以.(2)因?yàn)?,分別是正方形邊,的中點(diǎn),所以又因?yàn)?,都垂直于平面,平面,所以因?yàn)槠矫?,所以平面所以,四面體的體積,所以.【點(diǎn)睛】本題主要考查了線面垂直的性質(zhì)定理的應(yīng)用,以及求棱錐的體積,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用零點(diǎn)分段討論法把函數(shù)改寫成分段函數(shù)的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對(duì)值三角不等式求出的最小值,利用均值不等式求出的最小值,結(jié)合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,,或,或,或所以不等式的解集為;(Ⅱ)因?yàn)椋郑ó?dāng)時(shí)等號(hào)成立),依題意,,,有,則,解之得,故實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查由存在性問題求參數(shù)的范圍、零點(diǎn)分段討論法解絕對(duì)值不等式、利用絕對(duì)值三角不等式和均值不等式求最值;考查運(yùn)算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.20、(1),.(2),【解析】
(1)利用枚舉法將范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對(duì)都寫出來,再做和;(2)用組合數(shù)表示和,再由公式或?qū)⒔M合數(shù)進(jìn)行化簡(jiǎn),得出最終結(jié)果.【詳解】解:(1)范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對(duì)有:,,,,它們的范數(shù)依次為1,1,1,1,故,.(2)當(dāng)n為偶數(shù)時(shí),在向量的n個(gè)坐標(biāo)中,要使得范數(shù)為奇數(shù),則0的個(gè)數(shù)一定是奇數(shù),所以可按照含0個(gè)數(shù)為:1,3,…,進(jìn)行討論:的n個(gè)坐標(biāo)中含1個(gè)0,其余坐標(biāo)為1或,共有個(gè),每個(gè)的范數(shù)為;的n個(gè)坐標(biāo)中含3個(gè)0,其余坐標(biāo)為1或,共有個(gè),每個(gè)的范數(shù)為;的n個(gè)坐標(biāo)中含個(gè)0,其余坐標(biāo)為1或,共有個(gè),每個(gè)的范數(shù)為1;所以,.因?yàn)?,①,②得,,所?解法1:因?yàn)椋?.解法2:得,.又因?yàn)椋?【點(diǎn)睛】本題考查了數(shù)列和組合,是一道較難的綜合題.21、(1);(2)見解析.【解析】
(1)根據(jù)題意得出關(guān)于、、的方程組,解出、的值,進(jìn)而可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)、、,設(shè)直線的方程為,將該直線的方程與橢圓的方程聯(lián)立,并列出韋達(dá)定理,由向量的坐標(biāo)運(yùn)算可求得點(diǎn)的坐標(biāo)表達(dá)式,并代入韋達(dá)定理,消去,可得出點(diǎn)的橫坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年稅務(wù)會(huì)計(jì)咨詢合同
- 銀行網(wǎng)點(diǎn)租賃合同模板
- 空氣凈化設(shè)備租賃協(xié)議樣本
- 排水管道管涵施工合同
- 超市收銀區(qū)地磚鋪裝項(xiàng)目協(xié)議
- 醫(yī)院防雷施工合同
- 商場(chǎng)衛(wèi)生清潔工招聘合同
- 未婚夫婚前房產(chǎn)協(xié)議
- 養(yǎng)老院租賃協(xié)議
- 通信工程商品混凝土施工協(xié)議
- 《大學(xué)物理學(xué)》精美課件(全)
- 規(guī)范權(quán)力運(yùn)行方面存在問題及整改措施范文(五篇)
- 減壓孔板計(jì)算
- 博物館學(xué)概論課件:博物館與觀眾
- 著色滲透探傷檢測(cè)報(bào)告
- 反恐培訓(xùn)內(nèi)容
- 配套課件-計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)實(shí)踐教程-王秋華
- 農(nóng)產(chǎn)品質(zhì)量安全檢測(cè)機(jī)構(gòu)考核評(píng)審細(xì)則
- 裝修申請(qǐng)審批表
- 建筑施工安全檢查標(biāo)準(zhǔn)jgj59-2023
- 2023年大學(xué)生《思想道德與法治》考試題庫附答案(712題)
評(píng)論
0/150
提交評(píng)論