版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題01五大類解三角形題型-2024年高考數(shù)學(xué)大題秒殺技巧及專項(xiàng)訓(xùn)練(原卷版)【題型1三角形周長(zhǎng)定值及最值】【題型2三角形涉及長(zhǎng)度最值問(wèn)題】【題型3三角形涉及中線長(zhǎng)問(wèn)題】【題型4三角形涉及角平分線問(wèn)題】【題型5三角形面積最值問(wèn)題】三角形周長(zhǎng)定值及最值:已知一角與兩邊乘積模型 第一步:求兩邊乘積第二步:利用余弦定理求出兩邊之和:已知一角與三角等量模型 第一步:求三角各自的大小第二步:利用正弦定理求出三邊的長(zhǎng)度最值步驟如下:第一步:先表示出周長(zhǎng)第二步:利用正弦定理將邊化為角第三步:多角化一角+輔助角公式,轉(zhuǎn)化為三角函數(shù)求最值已知的內(nèi)角的對(duì)邊分別為,且.(Ⅰ)求;(Ⅱ)若,求的周長(zhǎng).在中,角的對(duì)邊分別為,.(1)求;(2)若,,求的周長(zhǎng).在中,角的對(duì)邊分別為.(1)求;(2)若,且,求的周長(zhǎng).在中,,且(1)求;(2)若,求的周長(zhǎng).1.在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且,.(1)證明:是銳角三角形;(2)若,求的周長(zhǎng).2.的內(nèi)角的對(duì)邊分別為.(1)求;(2)若,求的周長(zhǎng)最小值.3.已知函數(shù)的最小正周期為.(1)求的值;(2)已知分別為中角的對(duì)邊,且滿足,求的周長(zhǎng)的最大值.4.的內(nèi)角A,,的對(duì)邊分別為,,,已知.(1)求;(2)若,的面積為,求的周長(zhǎng).5.在銳角中,,,(1)求角A;(2)求的周長(zhǎng)l的范圍.6.記的內(nèi)角,A,B,C的對(duì)邊分別是a,b,c,已知.(1)求a;(2)若,求的周長(zhǎng)l的取值范圍.7.設(shè)的內(nèi)角所對(duì)邊分別為,若.(1)求的值;(2)若且三個(gè)內(nèi)角中最大角是最小角的兩倍,當(dāng)周長(zhǎng)取最小值時(shí),求的面積.8.在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.(1)求角的大??;(2)若,求的周長(zhǎng)l的取值范圍.三角形涉及長(zhǎng)度最值問(wèn)題解三角形中最值或范圍問(wèn)題,通常涉及與邊長(zhǎng)常用處理思路:①余弦定理結(jié)合基本不等式構(gòu)造不等關(guān)系求出答案;②采用正弦定理邊化角,利用三角函數(shù)的范圍求出最值或范圍,如果三角形為銳角三角形,或其他的限制,通常采用這種方法;③巧妙利用三角換元,實(shí)現(xiàn)邊化角,進(jìn)而轉(zhuǎn)化為正弦或余弦函數(shù)求出最值在中,角所對(duì)的邊分別為.若.(1)求;(2)若為銳角三角形,求的取值范圍.在中,已知,且.(1)試確定的形狀;(2)求的值.已知函數(shù).在銳角中,角A,B,C的對(duì)邊分別是a,b,c,且滿足.(1)求A的值;(2)若,求的取值范圍.在銳角中,角A,B,C的對(duì)邊分別為a,b,c,為(1)求角A的大?。?2)當(dāng)時(shí),求的取值范圍.已知為銳角三角形,角的對(duì)邊分別為,且.(1)求角的大??;(2)若,求的取值范圍.1.在銳角三角形中,角A,B,C的對(duì)邊分別為a,b,c,.(1)求角B的值;(2)若,求的取值范圍.2.已知的內(nèi)角的對(duì)邊分別為,且滿足.(1)求角的大??;(2)已知是的中線,求的最小值.3.在銳角中,已知.(1)求;(2)求的取值范圍.4.已知在銳角三角形中,邊,,對(duì)應(yīng)角,向量,,且與垂直,.(1)求角;(2)求的取值范圍.5.記△的內(nèi)角的對(duì)邊分別為,已知.(1)求;(2)若,求的范圍.6.已知在中,角A,B,C的對(duì)邊分別為a,b,c,且.(1)求A;(2)若外接圓的直徑為,求的取值范圍.7.在中,角,,所對(duì)的邊分別為,,,已知.(1)求的值;(2)若為的中點(diǎn),且,求的最小值.8.在中,角A,B,C的對(duì)邊分別為a,b,c,其中,.(1)若,求的面積;(2)若為鈍角三角形,求a的取值范圍.三角形涉及中線長(zhǎng)問(wèn)題①中線長(zhǎng)定理:(兩次余弦定理推導(dǎo)可得)+(一次大三角形一次中線所在三角形+同余弦值) 如:在與同用求 ②中線長(zhǎng)常用方法 ③已知,求的范圍∵為定值,故滿足橢圓的第一定義∴半短軸半長(zhǎng)軸中,,,,則邊上的中線長(zhǎng)_______.在中,,.邊上的中線,則_____.中,,則邊上中線的長(zhǎng)為_(kāi)____.1.已知的內(nèi)角的對(duì)邊分別為,且滿足.(1)求角的大?。?2)已知是的中線,求的最小值.2.在①;②;③;這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并解答問(wèn)題(其中S為的面積).問(wèn)題:在中,角A,B,C的對(duì)邊分別為a,b,c,且______.(1)求角B的大??;(2)AC邊上的中線,求的面積的最大值.3.在中,(1)若,求的面積;(2)求邊上的中線的取值范圍.4.記的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.(1)若,求B;(2)若,求邊上的中線的長(zhǎng).5.已知的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,.(1)求A;(2)若,求中BC邊中線AD長(zhǎng).6.在銳角中,角、、所對(duì)的邊分別為、、.①;②;③.在以上三個(gè)條件中選擇一個(gè),并作答.(1)求角;(2)已知的面積為,是邊上的中線,求的最小值.7.記的內(nèi)角的對(duì)邊分別為,面積為,已知.(1)求的值;(2)若邊上的中線,求周長(zhǎng)的最小值.8.已知中,角所對(duì)的邊長(zhǎng)分別為,且,為邊上一點(diǎn),且.(1)若為中線,且,求;(2)若為的平分線,且為銳角三角形,求的取值范圍.三角形涉及角平分線問(wèn)題張角定理如圖,在中,為邊上一點(diǎn),連接,設(shè),則一定有證明過(guò)程:∵∴同時(shí)除以得在中,角所對(duì)的邊分別為,,交于點(diǎn)D,且,則的最小值為_(kāi)_______.在中,角所對(duì)的邊分別為,點(diǎn)在邊上,,,,則的長(zhǎng)為_(kāi)_______.已知在中,角所對(duì)的邊分別為.為上一點(diǎn)且則的最小值為_(kāi)_________.在中,角所對(duì)的邊分別為,,的平分線交于點(diǎn),且,則的最小值為_(kāi)_____.1.在銳角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知,且.(1)求證:;(2)若的平分線交AC于D,且,求線段BD的長(zhǎng)度的取值范圍.2.如圖,在中,的平分線交邊于點(diǎn),點(diǎn)在邊上,,,.
(1)求的大小;(2)若,求的面積.3.已知的內(nèi)角,,的對(duì)邊分別為,,,.(1)求;(2)若角的平分線交于點(diǎn),且,求面積的最小值.4.在中,內(nèi)角、、的對(duì)邊分別為、、,若.(1)求角的大?。?2)若,的平分線交于點(diǎn),求線段長(zhǎng)度的最大值.5.已知中,內(nèi)角所對(duì)的邊分別為,且.(1)若的平分線與邊交于點(diǎn),求的值;(2)若,點(diǎn)分別在邊上,的周長(zhǎng)為5,求的最小值.6.如圖,在平面四邊形中,,,的平分線交于點(diǎn),且.
(1)求及;(2)若,求周長(zhǎng)的最大值.7.中,角的對(duì)邊分別為,的平分線交邊于,過(guò)作,垂足為點(diǎn).(1)求角A的大??;(2)若,求的長(zhǎng).8.已知條件:①;②;③.從三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并解答問(wèn)題:在中,角A,B,C所對(duì)的邊分別為a,b,c,滿足:____.(1)求角C的大?。?2)若,與的平分線交于點(diǎn)I,求周長(zhǎng)的最大值.三角形面積最值問(wèn)題:面積最值問(wèn)題技巧:正規(guī)方法:面積公式+基本不等式①②③秒殺方法:在中,已知,則:其中分別是的系數(shù)三角形面積公式①②其中分別為內(nèi)切圓半徑及的周長(zhǎng)推導(dǎo):將分為三個(gè)分別以的邊長(zhǎng)為底,內(nèi)切圓與邊相交的半徑為高的三角形,利用等面積法即可得到上述公式③(為外接圓的半徑)推導(dǎo):將代入可得將代入可得④⑤海倫公式(其中)推導(dǎo):根據(jù)余弦定理的推論令,整理得在中,內(nèi)角,,的對(duì)邊分別為,,,已知,,,則的面積為()在,角,,的邊分別為,,,且,,,則的內(nèi)切圓的半徑為()已知在中,角,,的對(duì)邊分別為,,,,,的面積等于,則外接圓的面積為()在中,角的對(duì)邊分別為,已知,,則的面積最大值為_(kāi)____________中,角的對(duì)邊分別為,且,,則面積的最大值為()1.中角所對(duì)的邊分別為,其面積為,且.(1)求;(2)已知,求的取值范圍.2.如圖,在四邊形中,,,且的外接圓半徑為4.(1)若,,求的面積;(2)若,求的最大值.3.已知的內(nèi)角,,的對(duì)邊分別為,,,.(1)求;(2)若角的平分線交于點(diǎn),且,求面積的取值范圍.4.在中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且.(1)求角A的大小;(2)若的周長(zhǎng)為6,求面積S的最大值.5.已知中內(nèi)角,,所對(duì)邊分別為,,,.(1)求;(2)若邊上一點(diǎn),滿足且,求的面積最大值.6.在
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025單位基本建設(shè)合同簡(jiǎn)易范文
- 2025年度公司經(jīng)理內(nèi)部審計(jì)與合規(guī)聘用合同3篇
- 二零二五年度環(huán)保建材工廠設(shè)備轉(zhuǎn)讓合同3篇
- 2025年度量子信息內(nèi)部股東股權(quán)轉(zhuǎn)讓協(xié)議書(shū)范文3篇
- 二零二五年度企業(yè)年會(huì)場(chǎng)地布置用品采購(gòu)協(xié)議3篇
- 二零二五年度股權(quán)代持風(fēng)險(xiǎn)管理與合作協(xié)議2篇
- 2025年度員工宿舍租賃及智能化安防系統(tǒng)合同3篇
- 2025年度綠色養(yǎng)殖場(chǎng)養(yǎng)殖工人勞動(dòng)合同3篇
- 2025年度農(nóng)業(yè)機(jī)械出租與農(nóng)機(jī)具維修服務(wù)合同3篇
- 二零二五年度智能交通系統(tǒng)合作項(xiàng)目協(xié)議書(shū)模板3篇
- 2023四川測(cè)繪地理信息局直屬事業(yè)單位招考筆試參考題庫(kù)(共500題)答案詳解版
- 【《“雙減”背景下小學(xué)數(shù)學(xué)創(chuàng)新作業(yè)設(shè)計(jì)問(wèn)題研究》(論文)】
- 健康養(yǎng)生管理系統(tǒng)
- 口風(fēng)琴在小學(xué)音樂(lè)課堂中的運(yùn)用與實(shí)踐 論文
- 塑件模具驗(yàn)收?qǐng)?bào)告
- 2023年9月份濟(jì)南天橋區(qū)濼口實(shí)驗(yàn)中學(xué)八年級(jí)上學(xué)期語(yǔ)文月考試卷(含答案)
- 信號(hào)分析與處理-教學(xué)大綱
- 特許經(jīng)銷合同
- 吉林大學(xué)藥學(xué)導(dǎo)論期末考試高分題庫(kù)全集含答案
- 2023-2024學(xué)年河北省唐山市灤州市數(shù)學(xué)七年級(jí)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析
- 數(shù)字油畫(huà)課件
評(píng)論
0/150
提交評(píng)論