版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023
ISSN1831-9424
CLEANENERGYTECHNOLOGY
OBSERVATORY
SmartgridsintheEuropeanUnion
STATUSREPORTONTECHNOLOGY
DEVELOPMENT,TRENDS,VALUECHAINS&
MARKETS
EUR31673EN
ThispublicationisaTechnicalreportbytheJointResearchCentre(JRC),theEuropeanCommission’sscienceandknowledgeservice.Itaimstoprovideevidence-basedscientificsupporttotheEuropeanpolicymakingprocess.ThecontentsofthispublicationdonotnecessarilyreflectthepositionoropinionoftheEuropeanCommission.NeithertheEuropeanCommissionnoranypersonactingonbehalfoftheCommissionisresponsiblefortheusethatmightbemadeofthispublication.ForinformationonthemethodologyandqualityunderlyingthedatausedinthispublicationforwhichthesourceisneitherEurostatnorotherCommissionservices,usersshouldcontactthereferencedsource.ThedesignationsemployedandthepresentationofmaterialonthemapsdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheEuropeanUnionconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.
Contactinformation
Name:AntonioDePaola
Address:ViaEnricoFermi,2749
Email:antonio.de-paola@ec.europa.eu
EUScienceHub
https://joint-research-centre.ec.europa.eu
JRC134988
EUR31673EN
PDFISBN978-92-68-07825-9ISSN1831-9424
doi:10.2760/237911
KJ-NA-31-673-EN-N
Luxembourg:PublicationsOfficeoftheEuropeanUnion,2023
?EuropeanUnion,2023
ThereusepolicyoftheEuropeanCommissiondocumentsisimplementedbytheCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).Unlessotherwisenoted,thereuseofthisdocumentisauthorisedundertheCreativeCommonsAttribution4.0International(CCBY4.0)licence
(/licenses/by/4.0/)
.Thismeansthatreuseisallowedprovidedappropriatecreditisgivenandanychangesareindicated.
ForanyuseorreproductionofphotosorothermaterialthatisnotownedbytheEuropeanUnion/EuropeanAtomicEnergyCommunity,permissionmustbesoughtdirectlyfromthecopyrightholders.TheEuropeanUniondoesnotownthecopyrightinrelationtothefollowingelements:
-Coverpageillustration:infraFotolia_65145278
-Anyotherimagessoindicatedinthebodyofthedocument
Howtocitethisreport:DePaola,A.,Andreadou,N.,Kotsakis,E.,CleanEnergyTechnologyObservatory:SmartGridsintheEuropeanUnion-2023StatusReportonTechnologyDevelopment,Trends,ValueChainsandMarkets,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2023,doi:10.2760/237911,JRC134988.
i
Contents
Abstract 1
ForewordontheCleanEnergyTechnologyObservatory 2
Acknowledgements 3
ExecutiveSummary 4
1Introduction 6
1.1Scopeandcontext 6
1.1.1High-VoltageDirect-Current(HVDC)Technologies 6
1.1.2SmartMeteringInfrastructure 6
1.2MethodologyandDataSources 6
2High-VoltageDirect-Current(HVDC)Technology 7
2.1Technologydevelopmentandtrends 7
2.1.1TechnologyReadinesslevels 7
2.1.2Installedcapacityandproduction 8
2.1.3Technologycosts 10
2.1.4Patentingtrends 11
2.1.5PublicfundingandimpactofEU-supportedresearch 12
2.2ValueChainAnalysis 12
2.3EUMarketPositionandGlobalCompetiveness 13
2.3.1Global&EUmarketleaders 13
2.3.2Marketvalue 14
3.AdvancedMeteringInfrastructure 15
3.1Technologydevelopmentandtrends 16
3.2Valuechainanalysis 18
3.3Globalcompetiveness 24
3.3.1SmartMeterMarketLeaders 25
4.Conclusions 27
References 28
Listofabbreviationsanddefinitions 30
Listoffigures 31
Listoftables 32
Annexes 33
Annex1SummaryTableofDataSourcesfortheCETOIndicators 34
1
Abstract
ThisdocumentprovidesanoverviewofthelatesttechnologicalandmarkettrendsonthetopicofSmartGridsintheEuropeanUnion.Giventhebroadscopeofthetopicandthecomprehensiveapproachfollowedinthelastyearreport,theanalysishasfocusedinsteadontwospecificenablingtechnologieswhichhaveexhibitedsignificantdevelopmentsinthelastyear:HighVoltageDirect-Current(HVDC)connectionsandSmartMeteringInfrastructure.ThechoiceofanalysingHVDCrecognizesthefundamentalrolethatthenetworkinfrastructurewillplayinthesmoothintegrationofnewrenewablesourcesandinthesupporttoanefficientoperationofadecarbonizedgrid,whereasthefocusonSmartMeteringInfrastructureismeanttohighlightitsrelevanceintheupgradeoftheenergygrid,withnumeroussmartmeterrolloutplansworldwide.Foreachofthesetwotopics,thecurrentstatusisreportedintermsoftechnologydevelopmentsandtrends,valuechainanalysisandglobalcompetitiveness.
2
ForewordontheCleanEnergyTechnologyObservatory
TheEuropeanCommissionsetuptheCleanEnergyTechnologyObservatory(CETO)in2022tohelpaddressthecomplexityandmulti-facedcharacterofthetransitiontoaclimate-neutralsocietyinEurope.TheEU’sambitiousenergyandclimatepoliciescreateanecessitytotackletherelatedchallengesinacomprehensivemanner,recognizingtheimportantroleforadvancedtechnologiesandinnovationintheprocess.
CETOisajointinitiativeoftheEuropeanCommissionJointResearchCentre(JRC),whoruntheobservatory,andDirectorateGeneralsResearchandInnovation(R&I)andEnergy(ENER)onthepolicyside.Itsoverallobjectivesareto:
-monitortheEUresearchandinnovationactivitiesoncleanenergytechnologiesneededforthedeliveryoftheEuropeanGreenDeal
-assessthecompetitivenessoftheEUcleanenergysectoranditspositioningintheglobalenergymarket
-buildonexistingCommissionstudies,relevantinformation&knowledgeinCommissionservicesandagencies,andtheLowCarbonEnergyObservatory(2015-2020)
-publishreportsontheStrategicEnergyTechnologyPlan
(SET-Plan)
SETISonlineplatform
CETOprovidesarepositoryoftechno-andsocio-economicdataonthemostrelevanttechnologiesandtheirintegrationintheenergysystem.Ittargetsinparticularthestatusandoutlookforinnovativesolutionsaswellasthesustainablemarketuptakeofbothmatureandinventivetechnologies.TheprojectservesasprimarysourceofdatafortheCommission’sannualprogressreportson
competitivenessofcleanenergytechnologies.
ItalsosupportstheimplementationofanddevelopmentofEUresearchandinnovationpolicy.
Theobservatoryproducesaseriesofannualreportsaddressingthefollowingthemes:
-CleanEnergyTechnologyStatus,ValueChainsandMarket:coveringadvancedbiofuels,batteries,bioenergy,carboncaptureutilisationandstorage,concentratedsolarpowerandheat,geothermalheatandpower,heatpumps,hydropower&pumpedhydropowerstorage,novelelectricityandheatstoragetechnologies,oceanenergy,photovoltaics,renewablefuelsofnon-biologicalorigin(other),renewablehydrogen,solarfuels(direct)andwind(offshoreandonshore).
-CleanEnergyTechnologySystemIntegration:building-relatedtechnologies,digitalinfrastructureforsmartenergysystem,industrialanddistrictheat&coldmanagement,standalonesystems,transmissionanddistributiontechnologies,smartcitiesandinnovativeenergycarriersandsupplyfortransport.
-ForesightAnalysisforFutureCleanEnergyTechnologiesusingWeakSignalAnalysis
-CleanEnergyOutlooks:AnalysisandCriticalReview
-SystemModellingforCleanEnergyTechnologyScenarios
-OverallStrategicAnalysisofCleanEnergyTechnologySectorMoredetailsareavailableonthe
CETOwebpages
3
Acknowledgements
Theauthorsareparticularlygratefulforthecommentsreceivedfromthefollowingcolleagues:JRC.C.7ERICteamcolleagueAlikiGeorgakaki
GiuliaSERRA(ENER),PeterHorvath(ENER),PabloRiesgoAbeledo(ENER)fortheirreviewandcomments.
JRCcolleaguesNigelTAYLOR(CETOprojectleader)andAndreasSCHMITZ(CETOdeputyprojectleader)fortheirsupport,reviewandcomments.
Theauthorswouldalsoliketothanktheexternalstakeholdersthathavecontributedwithinterestingdiscussionsandinformativedocumentationtothepresentreport:VolkerWendtandAlbertoLampasona(Europacable),BernarddeClercqandHaraldVanOutryved’Ydewalle(EliaGroup)andDiederikPeereboom(T&DEurope).
Authors
DePaola,A.,Andreadou,N.,Kotsakis,E.
4
ExecutiveSummary
ThisreportaimstoprovideanupdatedoverviewofthelatesttrendsanddevelopmentsintheSmartGridsector.Giventheverybroadscopeofthesubjectandconsideringthecomprehensiveapproachfollowedinthe2022report(EuropeanCommission,2022),thisdocumentfocusesinsteadontwospecifictopicsthatexhibitedverysignificantdevelopmentsinthelastyear:High-VoltageDirect-Current(HVDC)technologyandSmartMeteringInfrastructure.
High-VoltageDirect-Current(HVDC)systems
HVDCsystemsareestablishingthemselvesasafundamentalenablingtechnologyforthedecarbonisationoftheenergysystem.ThankstotheirincreasedcapacityandlowerlossesoverlongdistanceswithrespecttotheirACequivalents,theycanefficientlystrengthentheinterconnectivityoftheenergysystembylinkingdistantpowernetworkswithdifferentfrequenciesandfacilitatingtheinterconnectionoflargeoffshorewindplants.Theanalysishasshownthefollowing:
.HVDCisalreadyamatureandwell-establishedtechnologywithseveralsystemsalreadyproveninoperationalenvironments.However,therearestillsignificantmarginsfornewtechnologicaldevelopmentsandimprovements,particularlyinregardtoDC/DCbreakersanduseofCross-linkedPolyethylene(XLPE)cablesatveryhighvoltagelevels(525kVandabove).
.TheworldwideinstalledHVDCcapacityhastripledfrom2010,reachingatotallengthof100000kmandatotalcapacityof350GWattheendof2021.Asof2022,theHVDCcapacityinEuropeamountstoaround43GW,withadditional63GWcomingfrom51newprojects(mostlyintheplanningandpermittingstage.
.Fromapatentingperspective,themostactivecompaniesinthisfieldareChinese(StateGridCorporationofChinaandChinaSouthernPowerGrid).EuropeancompaniessuchasAlstom(France)andABB(Sweden-Switzerland)exhibitsmallerpatentingvolumesbuthighergeographicalreachandapplicationdiversity.
.TheEUisprovidingsubstantialfundingtoHVDC-relatedresearchactivities,with6fundingcallsandatotalbudgetof1300M€intheHorizonEuropeprogram.
.HVDCtransmissionprojectsaregenerallysuppliedseparatelyintheirmaincomponents,i.e.point-to-pointlinesandconverterstations.Currently,procurementleadtimesforcablesusuallyrangebetweentwoandfouryearswhilethetypicalleadtimeforHVDCconverterstationsisbetweentwoandthreeyears.However,leadtimesappeartobeincreasinginthelastperiod,mostlyduetoanincreasingworldwidedemandandextra-Europeancountriesthatareabletoplacebulkordersatcompetitivepricesandwithmorerelaxedstandards.OnepossiblesolutioncouldbeasimplificationanduniformimplementationintheMemberstatesoftheEUtenderinglaw.
.Intermsofsupplychains,themainEuropeanmanufacturersoftransformersareconsideredleadingglobalplayers.ThesameistruefortheEuropeancablemanufacturers,whoareexpectedtosatisfytheforecastdemandoverthenexttenyears.Theonlyrelevantconcernisassociatedwithhigh-powersemiconductors(akeycomponentofconvertervalves),whoseproductionisconcentratedinTaiwan.
.EstimationsonthevalueoftheglobalHVDCmarketat2021rangebetween9.48and16.96Bn$.Thefutureoutlookappearsquitepositive,withCompoundAnnualGrowthRate(CAGR)overthenext10yearsestimatedbetween7.1%and10.6%.
5
AdvancedMeteringInfrastructure
SmartmetersandingeneralAdvancedMeteringInfrastructureplayakeyroletothedigitalizationoftheenergygrid.Theyhavenumerousadvantagestoofferatmultipleactors,fromtheDSO/energyprovidertotheend-consumers.
Theadvantagesthatadvancedmeteringinfrastructureofferaresummarisedasfollowsbothfromanenergyproviderperspectiveandend-consumerperspective:
.Gridmonitoringandbettergridmanagement(outages,faultsinthenetwork);
.Enableinitiaveslikesmartcities,increaseusageofrenewableenergysources;
.Empowerconsumerstocontroltheirconsumptions;
.Enableenergysavinginacomprehensiveandeffectiveway;
.Enabletheparticipationinsmartenergyprograms,likedemandsideflexibilityprogram.
.Furthermore,associatedtoEVs(notably@Home/@workcharging),theyallowtwo-wayenergyanddataflows(V2G),significantlycontributingtopeak-shaving,thereforeimprovingtheoveralleconomiccompetitivenessofaregion(seeChinaandSouthKorearecentlylegislativeinitiativestogeneraliseV2GpluslinkswithAFIR,EPBD,SustainableTransportForuminitiative).
Advancemeteringinfrastructurehasattractedtheinterestofstakeholdersintheenergychainatgloballevel,withmassiverollout-plansongoingorscheduledaroundtheglobe.Duetothetechnology’simportance,itisconsideredfundamentaltomonitorthetechnologyreadinesslevel,thevaluechainandtheglobalmarketstatus.Forthisreason,theCleanenergyTechnologyObservatoryoffersmonitoringoftheAdvancedMeteringInfrastructuretechnology.Forthecurrentrelease,weprovideanupdateandacomparisonwithlastyear’sreport,showingthelatestimprovementsinthefieldtogetherwiththeoverallpicture.TherelatedthemeofcharginginfrastructureforEVshasnotbeenconsideredinthisdocument,asitisalreadyextensivelyanalysedinthelatestCINDECSreport(Kuokkanen,etal.,2023).
6
1Introduction
1.1Scopeandcontext
ThisdocumentaddressestheCleanEnergyTechnologyObservatorySub-TaskA.2andaimstoprovideanupdatedoverviewofthelatestdevelopmentsandtrendsintheSmartGridsector.Thereportreleasedlastyear(EuropeanCommission,2022)analysedfivedistincttopics:TransmissionNetworkInnovation,Grid-ScaleStorageServices,ElectricVehicleSmartCharging,AdvancedMeteringInfrastructureandHomeEnergyManagementSystems.Differentlyfromtheextensivescopeconsideredin(EuropeanCommission,2022),thepresentreportfocusesindetailontwospecificsectors(High-VoltageDirect-CurrentTechnologiesandSmartMeteringInfrastructure)thatexhibitedverysignificantdevelopmentsinthelastyear.Inregardtothesetwotopics,thereportpresentstheirmostrelevanttechnologicalstatusesandtrends,analisesthekeyfeaturesandmosttimelyissuesoftheirvaluechainsandassessesthemarketpositionandglobalcompetitevenessofEUcompanies.
1.1.1High-VoltageDirect-Current(HVDC)Technologies
Thechoiceofthisfirsttopicrecognizesthefundamentalrolethatthenetworkinfrastructurewillplayinthesmoothintegrationofnewrenewablesourcesandinthesupporttoanefficientoperationofadecarbonizedgrid.TheanalysisfollowsuponthegeneralTransmissionInnovationoverviewprovidedin(EuropeanCommission,2022)byfocusingonthespecifictopicofHigh-VoltageDCTransmission.ThescopeofthestudyincludesthemainphysicalassetsofHVDCsystems,i.e.transformers,HVDCconverters,DCcircuitbreakersandcables.Thestudydoesnotconsiderotheremergingtechnologiesinthetransmissionsectors,suchasFlexibleAlternatingCurrentsTransmissionSystems(FACTS),whichwillbethesubjectoffutureanalyses.
1.1.2SmartMeteringInfrastructure
ThechoiceofthistopicintendstoaddressmainadvancementsintheAdvancedMeteringInfrastructurefieldtogetherwithprovidingtheoverallpicture,notonlyatEuropeanlevel,butatgloballevel.Indeed,advancemeteringinfrastrureandinparticular,smartmeters,playakeyrolefortheupgradeoftheenergygrid,withnumeroussmartmeterrolloutplansworldwide.Thescopeofthisstudyistogiveanupdatewithrespecttolastyear’sstatusforsmartmeters,andinparticularfortheirtechnologyreadinesslevel,thevaluechainsandtheglobalmarketpicture.
1.2MethodologyandDataSources
ThereporthasbeenwrittenfollowingtheCETOmethodologythataddressesthreeprincipalaspects:
a)Technologymaturitystatus,developmentandtrends
b)Valuechainanalysis
c)GlobalmarketsandEUpositioning
Themainsourcesutilisedforthestudyinclude:
-Technicalreportsbypublicinstitutionsandprivateentities
-Scientificreviewpapersontechnologystate-ofthe-art
-ENTSO-Eenergyscenarios
-CORDISdatabaseforHorizon2020andHorizonEuroperesearchprojects
Additionalinformation,bothintheformofqualitativeassessmentsandquantitativedata,hasbeenobtainedthroughcontactswithexternalstakeholders,includingTSOentities(Elia,ENTSO-E),individualmanufacturers(Hitachi,GeneralElectric)andindustryassociations(T&DEurope,Europacable).
7
2High-VoltageDirect-Current(HVDC)Technology
High-VoltageDirectCurrent(HVDC)systemsareplayinganincreasinglysignificantroleinsupportingthedecarbonisationoftheenergysystem.Thankstotheirincreasedcapacityandlowerlossesoverlongdistances(see
Figure1)
withrespecttotheirACequivalents,theycanstrengthenefficientlytheinterconnectivityoftheenergysystembylinkingdistantpowernetworkswithdifferentfrequenciesandsignificantlyfacilitatingtheinterconnectionoflargeoffshorewindplants.
Figure1.ComparisonofenergylossesinACandDCoverheadlines.
Source:(ABB,2014)
Initsbasicstructure(see
Figure2)
,aHVDCsystemincludes:
-CircuitbreakersontheACside(considerablycheaperthanDCbreakers)
-HVDCconverters,includingAC/DCandDC/ACconvertersandequipmentforreactivepowersupportandfiltering.TheAC/DCandDC/ACconverterscangenerallyusetwodifferenttopologies:Line
CommutatedConverters(LCC),awell-establishedtechnologyrelyingonthyristors,andVoltageSourceConverters(VSC),whicharemorerecentandprovidegreatercontrollability
-HVDCconductors,whichcaneitherbeonshore(overheadorunderground)oroffshore(mainlysubmarinecables)
Figure2.GenericHVDCtransmissionprojectlayout.
Source:JRCre-elaborationoffigurein(Alassi,Ba?ales,Ellabban,Adam,&MacIver,2019)
2.1Technologydevelopmentandtrends
2.1.1TechnologyReadinesslevels
HVDCtransmissionhasnowadaysreachedasignificantlevelofmaturity.AsindicatedinthelatesttechnologyfactsheetsbyENTSO-E(ENTSO-E,2021),thebulkoftheHVDC-relatedtechnologieshavealreadybeenprovenintheoperationalenvironmentofactualsystem(TRL9).
8
Figure3.TechnologyReadinessLevel(TRL)ofprimaryenergytransmissiontechnologies(HVDCcomponentshighlightedinyellow).
Source:(ENTSO-E,2021)
Forexample,LineCommutatedConverters(LCC)areawell-establishedtechnologythathasbeenusedinHVDCsystemssincethe1970sandnowadayscanoperateonlinesuptoalengthof2000km.VoltageSourceConverters(VSC)havebeendevelopedmorerecentlybuttheyarebeingutilisedinmostofthenewHVDCprojectsastheyallowrapidcontrolofactiveandreactivepower.TheseconvertersgenerallyachieveaTRLof8-9,withtheexceptionofDC/DCconverterwhicharecurrentlyonlybeingvalidatedinlab(TRL4).
Intermsofconductors,MassImpregnated(MI)cablesrepresentaveryconsolidatedandtraditionaltechnologyforHVDCsystem,usedforbothon-shoreundergroundconnectionsandoff-shoreapplications.Recently,Cross-linkedPolyethylene(XLPE)cables,i.e.conductorswithextrudedinsulation,areseeinganincreaseddiffusionastheycanoperateatawiderangeoftemperaturesandareparticularlyresistanttocorrosionandvibrations.XLPEcablesoperatingat320kVareaverymaturetechnology(TRL9)whiletheirapplicationat525kVisstillbeingvalidated(TRL5)andtheiruseat600kVisatanexperimentalstage(TRL3).
Finally,intermsofswitchingcomponents,theHVDCcircuitbreakersarelessmaturethentheirACcounterparts,mostlyduetothechallengeofbreakingdirectcurrentinabsenceofzero-currentcrossings.Atthemoment,High-VoltageDCbreakersarebeingdemonstratedinrelevantenvironments(TRL6)whileExtra-High-Voltage(345kVandabove)DCbreakersarestillatanexperimentalstage(TRL3).
2.1.2Installedcapacityandproduction
Accordingtothelatestdataprovidedin(IEA,2023)andshownin
Figure4,
bytheendof2021thetotallengthofHVDClineshasreached100000kmandatotaltransmissioncapacityofmorethan350GW.HVDClineshavealmosttripledsince2010,althoughtheystillrepresentonly2%ofthetotaltransmissioninfrastructure.In2021,thelargestcapacityadditionshavebeenmadeinChina,whichintroduced50%ofthenewHVDClineswhileEuropecontributedby10%.
9
Figure4.GlobalHVDCtransmissionlinesbycountry/regionandlinetype.
Source:(IEA,2023)
Asof2022,theHVDCtransmissioncapacityinstalledinEuropeamountstoaround43GW(PowerTechnologyResearch,2022).Germanyleadsthismetricwith11.25GWofinstalledHVDCcapacity,whichmostlyconsistsofinterconnectionofoffshorepowerplantsintheNorthSearegion.ThesecondcountryintermsofinstalledcapacityistheUK,with6.4GWofinstalledHVDClinks,includingseveralcross-borderinterconnectionswithFrance,theNetherlandsandNorway.OthercountrieswithsubstantialHVDCcapacityareItaly,with3.7GWofinternallinksandconnectionswithFranceandMontenegroandDenmark,with2GWthataremostlysubseaconnectionswithSweden,NorwayandGermany.Forfutureinvestments,(ENTSO-E,2022)envisages51projectsthatentailneworexpandedDCtransmissionlines,with3projectsalreadyunderconstruction,31intheevaluationorplanningstageand17inthepermittingstage.Theadditionalaggregatecapacityoftheseprojectsamountstoabout63GW.AdetailedprojectiononthepotentialdemandforHigh-Voltage(HV)andExtraHigh-Voltage(EHV)cablesoverthenexttenyears,estimatedbyEuropacableonthebasisoftheENTSO-
E’sTYNDP2022andthedifferentNationalDevelopmentPlansisshownin
Table1.
Table1.ProjectedEuropeandemandofHVandEHVcablesby2032.
Cables(km)
HV&EHVACland
HV&EHV
DCland
HV&EHVACsubsea
HV&EHV
DCsubsea
Total
ENTSO-E’sTYNDP2022
804
9,670
2,478
38,752
51,764
ENTSO-E’sTYNDP2022&EuropeanNationalDevelopmentPlans
4,116
14,054
11,295
58,292
87,757
Source:EuropacableelaborationofTYNDP2022andEuropeanNationalDevelopmentPlans.
Itisestimatedthat,inthenexttenyears,thetotallengthofnewlandcablesinstalledinEuropeforHVDCprojectswillbeapproximatelybetween10,000and14,000km,aquantitysignificantlyhigherthanfornewACassets.Newsubseainstallationswillbeevenmoresubstantial,withanestimateofnewDCsubseacablesapproximatelybetween39,000and58,000km.
10
TheEuropeanUnionsupportsthissubstantialdeploymentofHVDCinfrastructurethroughitsProjectsofCommonInterest(PCIs),i.e.,keycross-borderinfrastructureprojectsthatbringsignificantpositiveimpactonenergymarketintegrationandenergysecurityinatleasttwoEUcountries(EuropeanCommission,2021).Suchprojectsbenefitfromanacceleratedpermit-grantingprocess,improvedregulatorytreatment,andthepossibilitytoapplyforfinancialsupportundertheConnectingEuropeFacility(CEF)forEnergy(totalbudgetof€5.84billionfortheperiod2021-2027).ThelatestPCIlist(EuropeanCommission,2021)includes14differentprojectsthatentailthedevelopmentofnewHVDClines.NineoftheseprojectsenvisageanHVDCconnectionbetweendifferentcountries,foratotal10.9GWofnewtransmissioncapacity,overatotalconnectionlengthofatleast3300km.FourotherprojectsentailthestrengtheningofnationalgridinfrastructureswithadditionalHVDClinks,foranadditional12GWcapacityandmorethan2200kmoflines.Finally,HVDCinterconnectorswillalsobeusedintheNorthSeaWindPowerHub,withtheobjectiveofconnecting12GWoffutureoffshorewindparkstoDenmark,theNetherlandsandGermany(EuropeanCommission,2021).
Intermsoftechnology,investmentshavebeengraduallyshiftingfromLCCtoVSCtransformers,withthelatterconstitutingthe72%ofnewinvestmentsbetween2010and2020,comparedtoonly44%intheprevioustenyears.Asshownin
Figure5,
newVSCprojectshavesignificantlyincreasedsince2015andhavereachedabout30GWofcumulativenewcapacityin2020.
Figure5.CumulativenewcapacityofVSCHVDClines.
Source:(Nishioka,Alvarez,&Omori,2020)
2.1.3Technologycosts
SomeofthelatestdataonthecostoftheHVDCtransmissioninfrastructureareprovidedin(DeSantis,James,Houchins,Saur,&Lyubovsky,2021),whichindicatesacapitalcostof933.34$/km-MWforatransmissionprojectof1610km(1000miles).Suchcostisgivenbythesumoffourmaincomponents,eachwithadifferentimpactonthetotal:thebiggestcostfactorsarematerials(57%)andsubstations(26%)whiletheimpactoflabor(11%)andRight-of-way(6%).ThesameauthorsalsoprovideacomparisonbetweenthecostsofACandDChigh-voltagelineoverdifferentconnectionlengths,asshownin
Figure6.
Itcanbeseenthatcostparityisachievedataround300miles(483km).Overlongerdistances,theadditionalcostsofthetransformersubstationsrequiredfortheHVDCconnectionsarecompensatedbytheincreasedefficiencyandlowerlossesprovidedbythedirectcurrentlink.
11
Figure6.ComparisonoftransmissioncostsvsdistanceforACandDCtechnologies.
Source:(DeSantis,James,Houchins,Saur,&Lyubovsky,2021)
2.1.4Patentingtrends
AsummaryofthepatentingactivitiesbykeyplayersintheHVDCsectorisshownin
Figure7.
ItcanbeseenthatthemostactivecompaniesinthisfieldarebyfarStateGridCorporationofChinaandChinaSouthernPowerGrid.Otherrelevantcompanieswithsmallerpatentingvolumesbuthighergeographicalreachandapplicationdiversityinclude:LSElectric(Korea),Alstom(France),NRElectric(China)andABB(Sweden-Switzerland).
Fi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度游樂園場地租賃及游樂設(shè)備租賃合同3篇
- 2024藝術(shù)品慈善捐贈合同版B版
- 個人汽車租賃協(xié)議樣本詳解版
- 二零二五年度智能穿戴設(shè)備技術(shù)服務(wù)電子合同3篇
- 2025年精裝房裝修改造與家具定制合同3篇
- 探索醫(yī)療領(lǐng)域中的分布式能源系統(tǒng)解決方案
- 2025年度個人房屋抵押貸款擔(dān)保與戶外活動組織合同4篇
- 智能消防系統(tǒng)在小區(qū)的應(yīng)用案例
- 現(xiàn)代學(xué)校游泳館的運(yùn)營與管理策略
- 展會參展視覺設(shè)計與用戶體驗的融合
- 2024年可行性研究報告投資估算及財務(wù)分析全套計算表格(含附表-帶只更改標(biāo)紅部分-操作簡單)
- 湖北省石首楚源“源網(wǎng)荷儲”一體化項目可研報告
- 醫(yī)療健康大數(shù)據(jù)平臺使用手冊
- 碳排放管理員 (碳排放核查員) 理論知識考核要素細(xì)目表四級
- 撂荒地整改協(xié)議書范本
- 診所負(fù)責(zé)人免責(zé)合同范本
- 2024患者十大安全目標(biāo)
- 會陰切開傷口裂開的護(hù)理查房
- 實驗報告·測定雞蛋殼中碳酸鈣的質(zhì)量分?jǐn)?shù)
- 部編版小學(xué)語文五年級下冊集體備課教材分析主講
- 電氣設(shè)備建筑安裝施工圖集
評論
0/150
提交評論