




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省六安市裕安中學2024年中考一模數(shù)學試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.對于二次函數(shù),下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點2.用加減法解方程組時,若要求消去,則應(yīng)()A. B. C. D.3.某車間有26名工人,每人每天可以生產(chǎn)800個螺釘或1000個螺母,1個螺釘需要配2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套.設(shè)安排x名工人生產(chǎn)螺釘,則下面所列方程正確的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x4.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小5.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.6.點M(1,2)關(guān)于y軸對稱點的坐標為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)7.實數(shù)a、b在數(shù)軸上的對應(yīng)點的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)<﹣1 B.a(chǎn)b>0 C.a(chǎn)﹣b<0 D.a(chǎn)+b<08.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶39.下列計算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣610.如圖,一艘海輪位于燈塔P的南偏東70°方向的M處,它以每小時40海里的速度向正北方向航行,2小時后到達位于燈塔P的北偏東40°的N處,則N處與燈塔P的距離為A.40海里 B.60海里 C.70海里 D.80海里11.二次函數(shù)y=a(x﹣m)2﹣n的圖象如圖,則一次函數(shù)y=mx+n的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限12.若關(guān)于x的方程是一元二次方程,則m的取值范圍是()A.. B.. C. D..二、填空題:(本大題共6個小題,每小題4分,共24分.)13.王英同學從A地沿北偏西60°方向走100米到B地,再從B地向正南方向走200米到C地,此時王英同學離A地的距離是_____米.14.甲、乙兩人分別從A,B兩地相向而行,他們距B地的距離s(km)與時間t(h)的關(guān)系如圖所示,那么乙的速度是__km/h.15.分式方程-1=的解是x=________.16.如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.17.據(jù)統(tǒng)計,今年無錫黿頭渚“櫻花節(jié)”活動期間入園賞櫻人數(shù)約803萬人次,用科學記數(shù)法可表示為_____人次.18.請寫出一個一次函數(shù)的解析式,滿足過點(1,0),且y隨x的增大而減小_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.20.(6分)如圖,AD是△ABC的中線,CF⊥AD于點F,BE⊥AD,交AD的延長線于點E,求證:AF+AE=2AD.21.(6分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC、AB于點E、F.(1)若∠B=30°,求證:以A、O、D、E為頂點的四邊形是菱形.(2)若AC=6,AB=10,連結(jié)AD,求⊙O的半徑和AD的長.22.(8分)如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°.(1)求證:四邊形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面積.23.(8分)如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.(1)求證:四邊形ABEF是平行四邊形;(2)當∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.24.(10分)已知Rt△ABC,∠A=90°,BC=10,以BC為邊向下作矩形BCDE,連AE交BC于F.(1)如圖1,當AB=AC,且sin∠BEF=時,求的值;(2)如圖2,當tan∠ABC=時,過D作DH⊥AE于H,求的值;(3)如圖3,連AD交BC于G,當時,求矩形BCDE的面積25.(10分)若關(guān)于的方程無解,求的值.26.(12分)觀察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的規(guī)律,寫出第⑥個等式:_____;(2)模仿上面的方法,寫出下面等式的左邊:_____=502;(3)按照上面的規(guī)律,寫出第n個等式,并證明其成立.27.(12分)三輛汽車經(jīng)過某收費站下高速時,在2個收費通道A,B中,可隨機選擇其中的一個通過.(1)三輛汽車經(jīng)過此收費站時,都選擇A通道通過的概率是;(2)求三輛汽車經(jīng)過此收費站時,至少有兩輛汽車選擇B通道通過的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
二次函數(shù),所以二次函數(shù)的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數(shù)的性質(zhì).2、C【解析】
利用加減消元法消去y即可.【詳解】用加減法解方程組時,若要求消去y,則應(yīng)①×5+②×3,
故選C【點睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.3、C【解析】
試題分析:此題等量關(guān)系為:2×螺釘總數(shù)=螺母總數(shù).據(jù)此設(shè)未知數(shù)列出方程即可【詳解】.故選C.解:設(shè)安排x名工人生產(chǎn)螺釘,則(26-x)人生產(chǎn)螺母,由題意得
1000(26-x)=2×800x,故C答案正確,考點:一元一次方程.4、D【解析】
根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,
∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;
∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關(guān)鍵是掌握中位數(shù)和方差的定義.5、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質(zhì)得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.6、A【解析】
關(guān)于y軸對稱的點的坐標特征是縱坐標不變,橫坐標變?yōu)橄喾磾?shù).【詳解】點M(1,2)關(guān)于y軸對稱點的坐標為(-1,2)【點睛】本題考查關(guān)于坐標軸對稱的點的坐標特征,牢記關(guān)于坐標軸對稱的點的性質(zhì)是解題的關(guān)鍵.7、C【解析】
直接利用a,b在數(shù)軸上的位置,進而分別對各個選項進行分析得出答案.【詳解】選項A,從數(shù)軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項A不合題意;選項B,從數(shù)軸上看出,a在原點左側(cè),b在原點右側(cè),∴a<0,b>0,∴ab<0,故選項B不合題意;選項C,從數(shù)軸上看出,a在b的左側(cè),∴a<b,即a﹣b<0,故選項C符合題意;選項D,從數(shù)軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項D不合題意.故選:C.【點睛】本題考查數(shù)軸和有理數(shù)的四則運算,解題的關(guān)鍵是掌握利用數(shù)軸表示有理數(shù)的大小.8、A【解析】∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點晴:本題主要通過證出兩個三角形是相似三角形,再利用相似三角形的性質(zhì):相似三角形的面積之比等于對應(yīng)邊之比的平方,進而將求面積比的問題轉(zhuǎn)化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關(guān)系(銳角三角形函數(shù))即可得出對應(yīng)邊之比,進而得到面積比.9、C【解析】
分別根據(jù)二次根式的定義,乘方的意義,負指數(shù)冪的意義以及絕對值的定義解答即可.【詳解】=3,故選項A不合題意;﹣32=﹣9,故選項B不合題意;(﹣3)﹣2=,故選項C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項D不合題意.故選C.【點睛】本題主要考查了二次根式的定義,乘方的定義、負指數(shù)冪的意義以及絕對值的定義,熟記定義是解答本題的關(guān)鍵.10、D【解析】分析:依題意,知MN=40海里/小時×2小時=80海里,∵根據(jù)方向角的意義和平行的性質(zhì),∠M=70°,∠N=40°,∴根據(jù)三角形內(nèi)角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故選D.11、A【解析】
由拋物線的頂點坐標在第四象限可得出m>0,n>0,再利用一次函數(shù)圖象與系數(shù)的關(guān)系,即可得出一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.【詳解】解:觀察函數(shù)圖象,可知:m>0,n>0,∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.故選A.【點睛】本題考查了二次函數(shù)的圖象以及一次函數(shù)圖象與系數(shù)的關(guān)系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關(guān)鍵.12、A【解析】
根據(jù)一元二次方程的定義可得m﹣1≠0,再解即可.【詳解】由題意得:m﹣1≠0,解得:m≠1,故選A.【點睛】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、100【解析】先在直角△ABE中利用三角函數(shù)求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.解:如圖,作AE⊥BC于點E.∵∠EAB=30°,AB=100,∴BE=50,AE=50.∵BC=200,∴CE=1.在Rt△ACE中,根據(jù)勾股定理得:AC=100.即此時王英同學離A地的距離是100米.故答案為100.解一般三角形的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.14、3.6【解析】分析:根據(jù)題意,甲的速度為6km/h,乙出發(fā)后2.5小時兩人相遇,可以用方程思想解決問題.詳解:由題意,甲速度為6km/h.當甲開始運動時相距36km,兩小時后,乙開始運動,經(jīng)過2.5小時兩人相遇.設(shè)乙的速度為xkm/h4.5×6+2.5x=36解得x=3.6故答案為3.6點睛:本題為一次函數(shù)實際應(yīng)用問題,考查一次函數(shù)圖象在實際背景下所代表的意義.解答這類問題時,也可以通過構(gòu)造方程解決問題.15、-5【解析】兩邊同時乘以(x+3)(x-3),得6-x2+9=-x2-3x,解得:x=-5,檢驗:當x=-5時,(x+3)(x-3)≠0,所以x=-5是分式方程的解,故答案為:-5.【點睛】本題考查了解分式方程,解題的關(guān)鍵是方程兩邊同時乘以最簡公分母,切記要進行檢驗.16、【解析】
由矩形的性質(zhì)可得AB=CD=4,BC=AD=6,AD//BC,由平行線的性質(zhì)和折疊的性質(zhì)可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的長,即可求△AFC的面積.【詳解】解:四邊形ABCD是矩形,,,折疊,在中,,,.故答案為:.【點睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理,利用勾股定理求AF的長是本題的關(guān)鍵.17、8.03×106【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).803萬=.18、y=﹣x+1【解析】
根據(jù)題意可以得到k的正負情況,然后寫出一個符合要求的解析式即可解答本題.【詳解】∵一次函數(shù)y隨x的增大而減小,∴k<0,∵一次函數(shù)的解析式,過點(1,0),∴滿足條件的一個函數(shù)解析式是y=-x+1,故答案為y=-x+1.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,寫出符合要求的函數(shù)解析式,這是一道開放性題目,答案不唯一,只要符合要去即可.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)62或3【解析】試題分析:(1)根據(jù)平行線的性質(zhì)和中點的性質(zhì)證明三角形全等,然后根據(jù)對角線互相平分的四邊形是平行四邊形完成證明;(2)由等腰三角形的性質(zhì),分三種情況:①BD=BC,②BD=CD,③BC=CD,分別求四邊形的面積.試題解析:(1)證明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是邊CD的中點∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四邊形BDFC是平行四邊形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=B∴四邊形BDFC的面積為S=22×3=62②若BD=DC過D作BC的垂線,則垂足為BC得中點,不可能;③若BC=DC過D作DG⊥BC,垂足為G在Rt△CDG中,DG=D∴四邊形BDFC的面積為S=35考點:三角形全等,平行四邊形的判定,勾股定理,四邊形的面積20、證明見解析.【解析】
由題意易用角角邊證明△BDE≌△CDF,得到DF=DE,再用等量代換的思想用含有AE和AF的等式表示AD的長.【詳解】證明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中線,∴BD=CD,∴在△BED與△CFD中,,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①,
AD=AE-DE②,由①+②得:AF+AE=2AD.【點睛】該題考察了三角形全等的證明,利用全等三角形的性質(zhì)進行對應(yīng)邊的轉(zhuǎn)化.21、(1)證明見解析;(2);3.【解析】試題分析:(1)連接OD、OE、ED.先證明△AOE是等邊三角形,得到AE=AO=0D,則四邊形AODE是平行四邊形,然后由OA=OD證明四邊形AODE是菱形;(2)連接OD、DF.先由△OBD∽△ABC,求出⊙O的半徑,然后證明△ADC∽△AFD,得出AD2=AC?AF,進而求出AD.試題解析:(1)證明:如圖1,連接OD、OE、ED.∵BC與⊙O相切于一點D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等邊三角形,∴AE=AO=0D,∴四邊形AODE是平行四邊形,∵OA=OD,∴四邊形AODE是菱形.(2)解:設(shè)⊙O的半徑為r.∵OD∥AC,∴△OBD∽△ABC.∴,即8r=6(8﹣r).解得r=,∴⊙O的半徑為.如圖2,連接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直徑,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC?AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.點評:本題考查了切線的性質(zhì)、圓周角定理、等邊三角形的判定與性質(zhì)、菱形的判定和性質(zhì)以及相似三角形的判定和性質(zhì),是一個綜合題,難度中等.熟練掌握相關(guān)圖形的性質(zhì)及判定是解本題的關(guān)鍵.考點:切線的性質(zhì);菱形的判定與性質(zhì);相似三角形的判定與性質(zhì).22、(1)見解析(2)25【解析】試題分析:(1)利用平行四邊形的性質(zhì)和菱形的性質(zhì)即可判定四邊形AECF是菱形;(2)連接EF交于點O,運用解直角三角形的知識點,可以求得AC與EF的長,再利用菱形的面積公式即可求得菱形AECF的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,點E是BC邊的中點,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四邊形AECF是平行四邊形.∴平行四邊形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53連接EF交于點O,∴AC⊥EF于點O,點O是AC中點.∴OE=12∴EF=53∴菱形AECF的面積是12AC·EF=25考點:1.菱形的性質(zhì)和面積;2.平行四邊形的性質(zhì);3.解直角三角形.23、(1)證明見解析(2)當∠ABC=60°時,四邊形ABEF為矩形【解析】
(1)根據(jù)旋轉(zhuǎn)得出CA=CE,CB=CF,根據(jù)平行四邊形的判定得出即可;(2)根據(jù)等邊三角形的判定得出△ABC是等邊三角形,求出AE=BF,根據(jù)矩形的判定得出即可.【詳解】(1)∵將△ABC繞點C順時針旋轉(zhuǎn)180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四邊形ABEF是平行四邊形;(2)當∠ABC=60°時,四邊形ABEF為矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等邊三角形,∴AB=AC=BC.∵CA=CE,CB=CF,∴AE=BF.∵四邊形ABEF是平行四邊形,∴四邊形ABEF是矩形.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)和矩形的判定、平行四邊形的判定、等邊三角形的性質(zhì)和判定等知識點,能綜合運用知識點進行推理是解答此題的關(guān)鍵.24、(1);(2)80;(3)100.【解析】
(1)過A作AK⊥BC于K,根據(jù)sin∠BEF=得出,設(shè)FK=3a,AK=5a,可求得BF=a,故;(2)過A作AK⊥BC于K,延長AK交ED于G,則AG⊥ED,得△EGA∽△EHD,利用相似三角形的性質(zhì)即可求出;(3)延長AB、ED交于K,延長AC、ED交于T,根據(jù)相似三角形的性質(zhì)可求出BE=ED,故可求出矩形的面積.【詳解】解:(1)過A作AK⊥BC于K,∵sin∠BEF=,sin∠FAK=,∴,設(shè)FK=3a,AK=5a,∴AK=4a,∵AB=AC,∠BAC=90°,∴BK=CK=4a,∴BF=a,又∵CF=7a,∴(2)過A作AK⊥BC于K,延長AK交ED于G,則AG⊥ED,∵∠AGE=∠DHE=90°,∴△EGA∽△EHD,∴,∴,其中EG=BK,∵BC=10,tan∠ABC=,cos∠ABC=,∴BA=BC·cos∠ABC=,BK=BA·cos∠ABC=∴EG=8,另一方面:ED=BC=10,∴EH·EA=80(3)延長AB、ED交于K,延長AC、ED交于T,∵BC∥KT,,∴,同理:∵FG2=BF·CG∴,∴ED2=KE·DT∴,又∵△KEB∽△CDT,∴,∴KE·DT=BE2,∴BE2=ED2∴BE=ED∴【點睛】此題主要考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 審計法學 課件 第15、16章 國有資產(chǎn)審計法律制度;國有資源審計制度
- 反洗錢宣傳培訓(xùn)管理制度
- 崇明區(qū)代理記賬管理制度
- 北京市公司班組管理制度
- 日常檔案材料管理制度
- 辦公物品及設(shè)備管理制度
- 互聯(lián)網(wǎng)學校教育管理制度
- 景區(qū)后勤流程管理制度
- 智能電子設(shè)備管理制度
- 國產(chǎn)電動車電池管理制度
- 錘擊樁(砼預(yù)制方樁、預(yù)應(yīng)力砼管樁、鋼樁)工程旁站監(jiān)理記錄
- 基于文獻計量學的屋頂綠化研究綜述
- 醫(yī)療設(shè)備日常維護記錄
- 血液標本采集-課件
- 【液壓機控制系統(tǒng)故障及診斷方法研究12000字(論文)】
- 中國蠶絲綢文化-浙江大學中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 中考地理試卷附詳細答案
- 2023-2024學年廣東省廣州市小學語文二年級期末自測考試題詳細參考答案解析
- GB/T 42532-2023濕地退化評估技術(shù)規(guī)范
- 2023-2024學年江蘇省太倉市小學語文五年級期末自測試卷附參考答案和詳細解析
- 巖石力學與工程課后習題與思考解答
評論
0/150
提交評論