2024屆浙江省杭州市臨安縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第1頁(yè)
2024屆浙江省杭州市臨安縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第2頁(yè)
2024屆浙江省杭州市臨安縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第3頁(yè)
2024屆浙江省杭州市臨安縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第4頁(yè)
2024屆浙江省杭州市臨安縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆浙江省杭州市臨安縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.2017年北京市在經(jīng)濟(jì)發(fā)展、社會(huì)進(jìn)步、城市建設(shè)、民生改善等方面取得新成績(jī)、新面貌.綜合實(shí)力穩(wěn)步提升.全市地區(qū)生產(chǎn)總值達(dá)到280000億元,將280000用科學(xué)記數(shù)法表示為()A.280×103 B.28×104 C.2.8×105 D.0.28×1062.下列式子成立的有()個(gè)①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個(gè)不等的實(shí)數(shù)根A.1 B.2 C.3 D.43.如圖,平行四邊形ABCD的周長(zhǎng)為12,∠A=60°,設(shè)邊AB的長(zhǎng)為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關(guān)系的圖象大致是()A. B. C. D.4.2017年我國(guó)大學(xué)生畢業(yè)人數(shù)將達(dá)到7490000人,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為()A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×1075.如圖,在平面直角坐標(biāo)系中,等腰直角三角形ABC的頂點(diǎn)A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點(diǎn)C在函數(shù)y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.6.如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長(zhǎng)為半徑畫(huà)弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過(guò)點(diǎn)E作射線OE,連接CD.則下列說(shuō)法錯(cuò)誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱D.O、E兩點(diǎn)關(guān)于CD所在直線對(duì)稱7.如圖,AD是⊙O的弦,過(guò)點(diǎn)O作AD的垂線,垂足為點(diǎn)C,交⊙O于點(diǎn)F,過(guò)點(diǎn)A作⊙O的切線,交OF的延長(zhǎng)線于點(diǎn)E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π8.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長(zhǎng)為()A. B. C. D.9.已知,如圖,AB//CD,∠DCF=100°,則∠AEF的度數(shù)為()A.120° B.110° C.100° D.80°10.在2018年新年賀詞中說(shuō)道:“安得廣廈千萬(wàn)間,大庇天下寒士俱歡顏!2017年我國(guó)3400000貧困人口實(shí)現(xiàn)易地扶貧搬遷、有了溫暖的新家.”其中3400000用科學(xué)記數(shù)法表示為()A.0.34×107 B.3.4×106 C.3.4×105 D.34×10511.如圖是某零件的示意圖,它的俯視圖是()A. B. C. D.12.某校舉行“漢字聽(tīng)寫比賽”,5個(gè)班級(jí)代表隊(duì)的正確答題數(shù)如圖.這5個(gè)正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,15二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.計(jì)算:()﹣1﹣(5﹣π)0=_____.14.2018年貴州省公務(wù)員、人民警察、基層培養(yǎng)項(xiàng)目和選調(diào)生報(bào)名人數(shù)約40.2萬(wàn)人,40.2萬(wàn)人用科學(xué)記數(shù)法表示為_(kāi)____人.15.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點(diǎn),在y軸上找一點(diǎn)P,當(dāng)PA+PB的值最小時(shí),點(diǎn)P的坐標(biāo)為_(kāi)________.16.如圖,路燈距離地面6,身高1.5的小明站在距離燈的底部(點(diǎn))15的處,則小明的影子的長(zhǎng)為_(kāi)_______.17.點(diǎn)P的坐標(biāo)是(a,b),從-2,-1,0,1,2這五個(gè)數(shù)中任取一個(gè)數(shù)作為a的值,再?gòu)挠嘞碌乃膫€(gè)數(shù)中任取一個(gè)數(shù)作為b的值,則點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率是.18.不等式組的解集是____________;三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)為了解某校落實(shí)新課改精神的情況,現(xiàn)以該校九年級(jí)二班的同學(xué)參加課外活動(dòng)的情況為樣本,對(duì)其參加“球類”、“繪畫(huà)類”、“舞蹈類”、“音樂(lè)類”、“棋類”活動(dòng)的情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)圖.

(1)參加音樂(lè)類活動(dòng)的學(xué)生人數(shù)為

人,參加球類活動(dòng)的人數(shù)的百分比為

(2)請(qǐng)把圖2(條形統(tǒng)計(jì)圖)補(bǔ)充完整;

(3)該校學(xué)生共600人,則參加棋類活動(dòng)的人數(shù)約為.

(4)該班參加舞蹈類活動(dòng)的4位同學(xué)中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求恰好選中一男一女的概率.

20.(6分)在連接A、B兩市的公路之間有一個(gè)機(jī)場(chǎng)C,機(jī)場(chǎng)大巴由A市駛向機(jī)場(chǎng)C,貨車由B市駛向A市,兩車同時(shí)出發(fā)勻速行駛,圖中線段、折線分別表示機(jī)場(chǎng)大巴、貨車到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達(dá)A市所需時(shí)間.求機(jī)場(chǎng)大巴到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式.求機(jī)場(chǎng)大巴與貨車相遇地到機(jī)場(chǎng)C的路程.21.(6分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.(1)求拋物線的表達(dá)式;(2)設(shè)拋物線的對(duì)稱軸為l,l與x軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.①求S關(guān)于t的函數(shù)表達(dá)式;②求P點(diǎn)到直線BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).22.(8分)閱讀(1)閱讀理解:如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是________;(2)問(wèn)題解決:如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;(3)問(wèn)題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E,F(xiàn)兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.23.(8分)為保護(hù)環(huán)境,我市公交公司計(jì)劃購(gòu)買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬(wàn)元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需350萬(wàn)元.求購(gòu)買A型和B型公交車每輛各需多少萬(wàn)元?預(yù)計(jì)在某線路上A型和B型公交車每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保這10輛公交車在該線路的年均載客總和不少于680萬(wàn)人次,則該公司有哪幾種購(gòu)車方案?在(2)的條件下,哪種購(gòu)車方案總費(fèi)用最少?最少總費(fèi)用是多少萬(wàn)元?24.(10分)如圖,已知直線AB與軸交于點(diǎn)C,與雙曲線交于A(3,)、B(-5,)兩點(diǎn).AD⊥軸于點(diǎn)D,BE∥軸且與軸交于點(diǎn)E.求點(diǎn)B的坐標(biāo)及直線AB的解析式;判斷四邊形CBED的形狀,并說(shuō)明理由.25.(10分)如圖,在平行四邊形ABCD中,AB<BC.利用尺規(guī)作圖,在AD邊上確定點(diǎn)E,使點(diǎn)E到邊AB,BC的距離相等(不寫作法,保留作圖痕跡);若BC=8,CD=5,則CE=.26.(12分)矩形ABCD中,DE平分∠ADC交BC邊于點(diǎn)E,P為DE上的一點(diǎn)(PE<PD),PM⊥PD,PM交AD邊于點(diǎn)M.(1)若點(diǎn)F是邊CD上一點(diǎn),滿足PF⊥PN,且點(diǎn)N位于AD邊上,如圖1所示.求證:①PN=PF;②DF+DN=DP;(2)如圖2所示,當(dāng)點(diǎn)F在CD邊的延長(zhǎng)線上時(shí),仍然滿足PF⊥PN,此時(shí)點(diǎn)N位于DA邊的延長(zhǎng)線上,如圖2所示;試問(wèn)DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.27.(12分)如圖,在等腰△ABC中,AB=BC,以AB為直徑的⊙O與AC相交于點(diǎn)D,過(guò)點(diǎn)D作DE⊥BC交AB延長(zhǎng)線于點(diǎn)E,垂足為點(diǎn)F.(1)證明:DE是⊙O的切線;(2)若BE=4,∠E=30°,求由、線段BE和線段DE所圍成圖形(陰影部分)的面積,(3)若⊙O的半徑r=5,sinA=,求線段EF的長(zhǎng).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】將280000用科學(xué)記數(shù)法表示為2.8×1.故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.2、B【解析】

根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運(yùn)算法則以及根的判別式進(jìn)行判斷.【詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯(cuò)誤;③(-)=﹣2,故錯(cuò)誤;④因?yàn)椤鳎?﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個(gè)不等的實(shí)數(shù)根,故正確.故選B.【點(diǎn)睛】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運(yùn)算法則以及根的判別式,屬于比較基礎(chǔ)的題目,熟記計(jì)算法則即可解答.3、C【解析】

過(guò)點(diǎn)B作BE⊥AD于E,構(gòu)建直角△ABE,通過(guò)解該直角三角形求得BE的長(zhǎng)度,然后利用平行四邊形的面積公式列出函數(shù)關(guān)系式,結(jié)合函數(shù)關(guān)系式找到對(duì)應(yīng)的圖像.【詳解】如圖,過(guò)點(diǎn)B作BE⊥AD于E.∵∠A=60°,設(shè)AB邊的長(zhǎng)為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長(zhǎng)為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數(shù)圖像是一開(kāi)口向下的拋物線的一部分,觀察選項(xiàng),C符合題意.故選C.【點(diǎn)睛】本題考查了二次函數(shù)的圖像,根據(jù)題意求出正確的函數(shù)關(guān)系式是解題的關(guān)鍵.4、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】7490000=7.49×106.故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.5、A【解析】【分析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質(zhì)得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征計(jì)算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點(diǎn)睛】本題考查了等腰直角三角形的性質(zhì)以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k是解題的關(guān)鍵.6、D【解析】試題分析:A、連接CE、DE,根據(jù)作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據(jù)作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據(jù)作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱,正確,不符合題意.D、根據(jù)作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點(diǎn)關(guān)于CD所在直線不對(duì)稱,錯(cuò)誤,符合題意.故選D.7、B【解析】

由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【詳解】連接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

則∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【點(diǎn)睛】考查了切線的判定和性質(zhì);能夠通過(guò)作輔助線將所求的角轉(zhuǎn)移到相應(yīng)的直角三角形中,是解答此題的關(guān)鍵要證某線是圓的切線,對(duì)于切線的判定:已知此線過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.8、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點(diǎn):1.切線的性質(zhì);3.矩形的性質(zhì).9、D【解析】

先利用鄰補(bǔ)角得到∠DCE=80°,然后根據(jù)平行線的性質(zhì)求解.【詳解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故選D.【點(diǎn)睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.10、B【解析】

解:3400000=.故選B.11、C【解析】

物體的俯視圖,即是從上面看物體得到的結(jié)果;根據(jù)三視圖的定義,從上面看物體可以看到是一個(gè)正六邊形,里面是一個(gè)沒(méi)有圓心的圓,由此可以確定答案.【詳解】從上面看是一個(gè)正六邊形,里面是一個(gè)沒(méi)有圓心的圓.故答案選C.【點(diǎn)睛】本題考查了幾何體的三視圖,解題的關(guān)鍵是熟練的掌握幾何體三視圖的定義.12、D【解析】

將五個(gè)答題數(shù),從小打到排列,5個(gè)數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個(gè)答題數(shù)排序?yàn)椋?0,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點(diǎn)睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】

分別根據(jù)負(fù)整數(shù)指數(shù)冪,0指數(shù)冪的化簡(jiǎn)計(jì)算出各數(shù),即可解題【詳解】解:原式=2﹣1=1,故答案為1.【點(diǎn)睛】此題考查負(fù)整數(shù)指數(shù)冪,0指數(shù)冪的化簡(jiǎn),難度不大14、4.02×1.【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:40.2萬(wàn)=4.02×1,故答案為:4.02×1.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.15、(0,).【解析】試題分析:把點(diǎn)A坐標(biāo)代入y=x+4得a=3,即A(﹣1,3),把點(diǎn)A坐標(biāo)代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數(shù)解析式得:,解得:,,即點(diǎn)B坐標(biāo)為:(﹣3,1),作出點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)C,連接BC,與y軸的交點(diǎn)即為點(diǎn)P,使得PA+PB的值最小,則點(diǎn)C坐標(biāo)為:(1,3),設(shè)直線BC的解析式為:y=ax+b,把B、C的坐標(biāo)代入得:,解得:,所以函數(shù)解析式為:y=x+,則與y軸的交點(diǎn)為:(0,).考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題;軸對(duì)稱-最短路線問(wèn)題.16、1.【解析】

易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影長(zhǎng).【詳解】解:根據(jù)題意,易得△MBA∽△MCO,

根據(jù)相似三角形的性質(zhì)可知,即,

解得AM=1m.則小明的影長(zhǎng)為1米.

故答案是:1.【點(diǎn)睛】本題只要是把實(shí)際問(wèn)題抽象到相似三角形中,利用相似三角形的相似比可得出小明的影長(zhǎng).17、【解析】畫(huà)樹(shù)狀圖為:共有20種等可能的結(jié)果數(shù),其中點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的結(jié)果數(shù)為4,所以點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率==.故答案為.18、﹣9<x≤﹣1【解析】

分別求出兩個(gè)不等式的解集,再求其公共解集.【詳解】,解不等式①,得:x≤-1,解不等式②,得:x>-9,所以不等式組的解集為:-9<x≤-1,故答案為:-9<x≤-1.【點(diǎn)睛】本題考查一元一次不等式組的解法,屬于基礎(chǔ)題.求不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)7、30%;(2)補(bǔ)圖見(jiàn)解析;(3)105人;(3)

【解析】試題分析:(1)先根據(jù)繪畫(huà)類人數(shù)及其百分比求得總?cè)藬?shù),繼而可得答案;(2)根據(jù)(1)中所求數(shù)據(jù)即可補(bǔ)全條形圖;(3)總?cè)藬?shù)乘以棋類活動(dòng)的百分比可得;(4)利用樹(shù)狀圖法列舉出所有可能的結(jié)果,然后利用概率公式即可求解.試題解析:解:(1)本次調(diào)查的總?cè)藬?shù)為10÷25%=40(人),∴參加音樂(lè)類活動(dòng)的學(xué)生人數(shù)為40×17.5%=7人,參加球類活動(dòng)的人數(shù)的百分比為×100%=30%,故答案為7,30%;(2)補(bǔ)全條形圖如下:(3)該校學(xué)生共600人,則參加棋類活動(dòng)的人數(shù)約為600×=105,故答案為105;(4)畫(huà)樹(shù)狀圖如下:共有12種情況,選中一男一女的有6種,則P(選中一男一女)==.點(diǎn)睛:本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大小.20、(1)連接A、B兩市公路的路程為80km,貨車由B市到達(dá)A市所需時(shí)間為h;(2)y=﹣80x+60(0≤x≤);(3)機(jī)場(chǎng)大巴與貨車相遇地到機(jī)場(chǎng)C的路程為km.【解析】

(1)根據(jù)可求出連接A、B兩市公路的路程,再根據(jù)貨車h行駛20km可求出貨車行駛60km所需時(shí)間;(2)根據(jù)函數(shù)圖象上點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出機(jī)場(chǎng)大巴到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式;(3)利用待定系數(shù)法求出線段ED對(duì)應(yīng)的函數(shù)表達(dá)式,聯(lián)立兩函數(shù)表達(dá)式成方程組,通過(guò)解方程組可求出機(jī)場(chǎng)大巴與貨車相遇地到機(jī)場(chǎng)C的路程.【詳解】解:(1)60+20=80(km),(h)∴連接A.

B兩市公路的路程為80km,貨車由B市到達(dá)A市所需時(shí)間為h.(2)設(shè)所求函數(shù)表達(dá)式為y=kx+b(k≠0),將點(diǎn)(0,60)、代入y=kx+b,得:解得:∴機(jī)場(chǎng)大巴到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式為(3)設(shè)線段ED對(duì)應(yīng)的函數(shù)表達(dá)式為y=mx+n(m≠0)將點(diǎn)代入y=mx+n,得:解得:∴線段ED對(duì)應(yīng)的函數(shù)表達(dá)式為解方程組得∴機(jī)場(chǎng)大巴與貨車相遇地到機(jī)場(chǎng)C的路程為km.【點(diǎn)睛】本題考查一次函數(shù)的應(yīng)用,掌握待定系數(shù)法求函數(shù)關(guān)系式是解題的關(guān)鍵,本題屬于中檔題,難度不大,但過(guò)程比較繁瑣,因此再解決該題是一定要細(xì)心.21、(1)y=﹣x2+2x+1.(2)當(dāng)t=2時(shí),點(diǎn)M的坐標(biāo)為(1,6);當(dāng)t≠2時(shí),不存在,理由見(jiàn)解析;(1)y=﹣x+1;P點(diǎn)到直線BC的距離的最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(,).【解析】【分析】(1)由點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達(dá)式;(2)連接PC,交拋物線對(duì)稱軸l于點(diǎn)E,由點(diǎn)A、B的坐標(biāo)可得出對(duì)稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當(dāng)t=2時(shí),由拋物線的對(duì)稱性可得出此時(shí)存在點(diǎn)M,使得四邊形CDPM是平行四邊形,再根據(jù)點(diǎn)C的坐標(biāo)利用平行四邊形的性質(zhì)可求出點(diǎn)P、M的坐標(biāo);當(dāng)t≠2時(shí),不存在,利用平行四邊形對(duì)角線互相平分結(jié)合CE≠PE可得出此時(shí)不存在符合題意的點(diǎn)M;(1)①過(guò)點(diǎn)P作PF∥y軸,交BC于點(diǎn)F,由點(diǎn)B、C的坐標(biāo)利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點(diǎn)P的坐標(biāo)可得出點(diǎn)F的坐標(biāo),進(jìn)而可得出PF的長(zhǎng)度,再由三角形的面積公式即可求出S關(guān)于t的函數(shù)表達(dá)式;②利用二次函數(shù)的性質(zhì)找出S的最大值,利用勾股定理可求出線段BC的長(zhǎng)度,利用面積法可求出P點(diǎn)到直線BC的距離的最大值,再找出此時(shí)點(diǎn)P的坐標(biāo)即可得出結(jié)論.【詳解】(1)將A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達(dá)式為y=﹣x2+2x+1;(2)在圖1中,連接PC,交拋物線對(duì)稱軸l于點(diǎn)E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點(diǎn),∴拋物線的對(duì)稱軸為直線x=1,當(dāng)t=2時(shí),點(diǎn)C、P關(guān)于直線l對(duì)稱,此時(shí)存在點(diǎn)M,使得四邊形CDPM是平行四邊形,∵拋物線的表達(dá)式為y=﹣x2+2x+1,∴點(diǎn)C的坐標(biāo)為(0,1),點(diǎn)P的坐標(biāo)為(2,1),∴點(diǎn)M的坐標(biāo)為(1,6);當(dāng)t≠2時(shí),不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點(diǎn)C的橫坐標(biāo)為0,點(diǎn)E的橫坐標(biāo)為0,∴點(diǎn)P的橫坐標(biāo)t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在圖2中,過(guò)點(diǎn)P作PF∥y軸,交BC于點(diǎn)F.設(shè)直線BC的解析式為y=mx+n(m≠0),將B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+1,∵點(diǎn)P的坐標(biāo)為(t,﹣t2+2t+1),∴點(diǎn)F的坐標(biāo)為(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF?OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴當(dāng)t=時(shí),S取最大值,最大值為.∵點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,1),∴線段BC=,∴P點(diǎn)到直線BC的距離的最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(,).【點(diǎn)睛】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、平行四邊形的判定與性質(zhì)、三角形的面積、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)由點(diǎn)的坐標(biāo),利用待定系數(shù)法求出拋物線表達(dá)式;(2)分t=2和t≠2兩種情況考慮;(1)①利用三角形的面積公式找出S關(guān)于t的函數(shù)表達(dá)式;②利用二次函數(shù)的性質(zhì)結(jié)合面積法求出P點(diǎn)到直線BC的距離的最大值.22、(1)2<AD<8;(2)證明見(jiàn)解析;(3)BE+DF=EF;理由見(jiàn)解析.【解析】試題分析:(1)延長(zhǎng)AD至E,使DE=AD,由SAS證明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三邊關(guān)系求出AE的取值范圍,即可得出AD的取值范圍;(2)延長(zhǎng)FD至點(diǎn)M,使DM=DF,連接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由線段垂直平分線的性質(zhì)得出EM=EF,在△BME中,由三角形的三邊關(guān)系得出BE+BM>EM即可得出結(jié)論;(3)延長(zhǎng)AB至點(diǎn)N,使BN=DF,連接CN,證出∠NBC=∠D,由SAS證明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,證出∠ECN=70°=∠ECF,再由SAS證明△NCE≌△FCE,得出EN=EF,即可得出結(jié)論.試題解析:(1)解:延長(zhǎng)AD至E,使DE=AD,連接BE,如圖①所示:∵AD是BC邊上的中線,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三邊關(guān)系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案為2<AD<8;(2)證明:延長(zhǎng)FD至點(diǎn)M,使DM=DF,連接BM、EM,如圖②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三邊關(guān)系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延長(zhǎng)AB至點(diǎn)N,使BN=DF,連接CN,如圖3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,BN=DF,∠NBC=∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考點(diǎn):全等三角形的判定和性質(zhì);三角形的三邊關(guān)系定理.23、(1)購(gòu)買A型公交車每輛需100萬(wàn)元,購(gòu)買B型公交車每輛需150萬(wàn)元.(2)三種方案:①購(gòu)買A型公交車6輛,則B型公交車4輛;②購(gòu)買A型公交車7輛,則B型公交車3輛;③購(gòu)買A型公交車8輛,則B型公交車2輛;(3)購(gòu)買A型公交車8輛,B型公交車2輛費(fèi)用最少,最少費(fèi)用為1100萬(wàn)元.【解析】

詳解:(1)設(shè)購(gòu)買A型公交車每輛需x萬(wàn)元,購(gòu)買B型公交車每輛需y萬(wàn)元,由題意得x+2y=解得x=答:購(gòu)買A型公交車每輛需100萬(wàn)元,購(gòu)買B型公交車每輛需150萬(wàn)元.(2)設(shè)購(gòu)買A型公交車a輛,則B型公交車(10-a)輛,由題意得100a+15010-a解得:6≤a≤8,因?yàn)閍是整數(shù),所以a=6,7,8;則(10-a)=4,3,2;三種方案:①購(gòu)買A型公交車6輛,B型公交車4輛;②購(gòu)買A型公交車7輛,B型公交車3輛;③購(gòu)買A型公交車8輛,B型公交車2輛.(3)①購(gòu)買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬(wàn)元;②購(gòu)買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬(wàn)元;③購(gòu)買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬(wàn)元;故購(gòu)買A型公交車8輛,則B型公交車2輛費(fèi)用最少,最少總費(fèi)用為1100萬(wàn)元.【點(diǎn)睛】此題考查二元一次方程組和一元一次不等式組的應(yīng)用,注意理解題意,找出題目蘊(yùn)含的數(shù)量關(guān)系,列出方程組或不等式組解決問(wèn)題.24、(1)點(diǎn)B的坐標(biāo)是(-5,-4);直線AB的解析式為:(2)四邊形CBED是菱形.理由見(jiàn)解析【解析】

(1)根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,將點(diǎn)A代入雙曲線方程求得k值,即利用待定系數(shù)法求得雙曲線方程;然后將B點(diǎn)代入其中,從而求得a值;設(shè)直線AB的解析式為y=mx+n,將A、B兩點(diǎn)的坐標(biāo)代入,利用待定系數(shù)法解答;(2)由點(diǎn)C、D的坐標(biāo)、已知條件“BE∥x軸”及兩點(diǎn)間的距離公式求得,CD=5,BE=5,且BE∥CD,從而可以證明四邊形CBED是平行四邊形;然后在Rt△OED中根據(jù)勾股定理求得ED=5,所以ED=CD,從而證明四邊形CBED是菱形.【詳解】解:(1)∵雙曲線過(guò)A(3,),∴.把B(-5,)代入,得.∴點(diǎn)B的坐標(biāo)是(-5,-4)設(shè)直線AB的解析式為,將A(3,)、B(-5,-4)代入得,,解得:.∴直線AB的解析式為:(2)四邊形CBED是菱形.理由如下:點(diǎn)D的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(-2,0).∵BE∥軸,∴點(diǎn)E的坐標(biāo)是(0,-4).而CD=5,BE=5,且BE∥CD.∴四邊形CBED是平行四邊形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形25、(1)見(jiàn)解析;(2)1.【解析】試題分析:根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等知作出∠A的平分線即可;根據(jù)平行四邊形的性質(zhì)可知AB=CD=5,AD∥BC,再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)得到∠BAE=∠BEA,再根據(jù)等腰三角形的性質(zhì)和線段的和差關(guān)系即可求解.試題解析:(1)如圖所示:E點(diǎn)即為所求.(2)∵四邊形ABCD是平行四邊形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分線,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考點(diǎn):作圖—復(fù)雜作圖;平行四邊形的性質(zhì)26、(1)①證明見(jiàn)解析;②證明見(jiàn)解析;(2)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論