2024屆揭陽市重點(diǎn)中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
2024屆揭陽市重點(diǎn)中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
2024屆揭陽市重點(diǎn)中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
2024屆揭陽市重點(diǎn)中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
2024屆揭陽市重點(diǎn)中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆揭陽市重點(diǎn)中學(xué)中考考前最后一卷數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.的相反數(shù)是()A. B.﹣ C.﹣ D.2.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.3.如圖1,等邊△ABC的邊長為3,分別以頂點(diǎn)B、A、C為圓心,BA長為半徑作弧AC、弧CB、弧BA,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形.設(shè)點(diǎn)I為對稱軸的交點(diǎn),如圖2,將這個圖形的頂點(diǎn)A與等邊△DEF的頂點(diǎn)D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動的滾動,當(dāng)它第一次回到起始位置時,這個圖形在運(yùn)動中掃過區(qū)域面積是()A.18π B.27π C.π D.45π4.化簡的結(jié)果為()A.﹣1 B.1 C. D.5.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.已知某校女子田徑隊(duì)23人年齡的平均數(shù)和中位數(shù)都是13歲,但是后來發(fā)現(xiàn)其中一位同學(xué)的年齡登記錯誤,將14歲寫成15歲,經(jīng)重新計(jì)算后,正確的平均數(shù)為a歲,中位數(shù)為b歲,則下列結(jié)論中正確的是()A.a(chǎn)<13,b=13B.a(chǎn)<13,b<13C.a(chǎn)>13,b<13D.a(chǎn)>13,b=137.如圖,是半圓的直徑,點(diǎn)、是半圓的三等分點(diǎn),弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.8.如圖,折疊矩形紙片ABCD的一邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,若AB=8,BC=10,則△CEF的周長為()A.12 B.16 C.18 D.249.今年3月5日,十三屆全國人大一次會議在人民大會堂開幕,會議聽取了國務(wù)院總理李克強(qiáng)關(guān)于政府工作的報(bào)告,其中表示,五年來,人民生活持續(xù)改善,脫貧攻堅(jiān)取得決定性進(jìn)展,貧困人口減少6800多萬,易地扶貧搬遷830萬人,貧困發(fā)生率由10.2%下降到3.1%,將830萬用科學(xué)記數(shù)法表示為()A.83×105 B.0.83×106 C.8.3×106 D.8.3×10710.已知拋物線y=x2-2mx-4(m>0)的頂點(diǎn)M關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn)為M′,若點(diǎn)M′在這條拋物線上,則點(diǎn)M的坐標(biāo)為()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)11.某班要推選學(xué)生參加學(xué)校的“詩詞達(dá)人”比賽,有7名學(xué)生報(bào)名參加班級選拔賽,他們的選拔賽成績各不相同,現(xiàn)取其中前3名參加學(xué)校比賽.小紅要判斷自己能否參加學(xué)校比賽,在知道自己成績的情況下,還需要知道這7名學(xué)生成績的()A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差12.已知關(guān)于x的一元二次方程有實(shí)數(shù)根,則m的取值范圍是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,平行線AB、CD被直線EF所截,若∠2=130°,則∠1=_____.14.點(diǎn)(a-1,y1)、(a+1,y2)在反比例函數(shù)y=(k>0)的圖象上,若y1<y2,則a的范圍是________.15.如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)D在圓O上,BD=CD,AB=10,AC=6,連接OD交BC于點(diǎn)E,DE=______.16.已知,如圖,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,則AC=.17.已知一次函數(shù)的圖象與直線y=x+3平行,并且經(jīng)過點(diǎn)(﹣2,﹣4),則這個一次函數(shù)的解析式為_____.18.在一張直角三角形紙片的兩直角邊上各取一點(diǎn),分別沿斜邊中點(diǎn)與這兩點(diǎn)的連線剪去兩個三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長分別為2,4,3,則原直角三角形紙片的斜邊長是_______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點(diǎn)M為邊BC上一動點(diǎn),聯(lián)結(jié)AM并延長交射線DC于點(diǎn)F,作∠FAE=45°交射線BC于點(diǎn)E、交邊DCN于點(diǎn)N,聯(lián)結(jié)EF.(1)當(dāng)CM:CB=1:4時,求CF的長.(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.(3)當(dāng)△ABM∽△EFN時,求CM的長.20.(6分)如圖,反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=2x的圖象相交于點(diǎn)A,其橫坐標(biāo)為1.(1)求k的值;(1)點(diǎn)B為此反比例函數(shù)圖象上一點(diǎn),其縱坐標(biāo)為2.過點(diǎn)B作CB∥OA,交x軸于點(diǎn)C,求點(diǎn)C的坐標(biāo).21.(6分)如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.求證:△BDE≌△BCE;試判斷四邊形ABED的形狀,并說明理由.22.(8分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)D,過其頂點(diǎn)C作直線CP⊥x軸,垂足為點(diǎn)P,連接AD、BC.(1)求點(diǎn)A、B、D的坐標(biāo);(2)若△AOD與△BPC相似,求a的值;(3)點(diǎn)D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.23.(8分)已知函數(shù)y=(x>0)的圖象與一次函數(shù)y=ax﹣2(a≠0)的圖象交于點(diǎn)A(3,n).(1)求實(shí)數(shù)a的值;(2)設(shè)一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點(diǎn)B,若點(diǎn)C在y軸上,且S△ABC=2S△AOB,求點(diǎn)C的坐標(biāo).24.(10分)先化簡,后求值:,其中.25.(10分)如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=kx的圖象交于C,D兩點(diǎn),與x,y軸交于B,A兩點(diǎn),且tan∠ABO=12,OB=4,OE=2(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;(2)求△OCD的面積;(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.26.(12分)Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC邊于點(diǎn)D,E是邊BC的中點(diǎn),連接DE,OD.(1)如圖①,求∠ODE的大小;(2)如圖②,連接OC交DE于點(diǎn)F,若OF=CF,求∠A的大?。?7.(12分)如圖平行四邊形ABCD中,對角線AC,BD交于點(diǎn)O,EF過點(diǎn)O,并與AD,BC分別交于點(diǎn)E,F(xiàn),已知AE=3,BF=5(1)求BC的長;(2)如果兩條對角線長的和是20,求三角形△AOD的周長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

一個數(shù)的相反數(shù)就是在這個數(shù)前面添上“﹣”號,由此即可求解.【詳解】解:的相反數(shù)是﹣.故選:B.【點(diǎn)睛】本題考查了相反數(shù)的意義,一個數(shù)的相反數(shù)就是在這個數(shù)前面添上“﹣”號:一個正數(shù)的相反數(shù)是負(fù)數(shù),一個負(fù)數(shù)的相反數(shù)是正數(shù),1的相反數(shù)是1.2、A【解析】

由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),得出方程ax2+(b-1)x+c=0有兩個不相等的根,進(jìn)而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點(diǎn),根據(jù)方程根與系數(shù)的關(guān)系得出函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,即可進(jìn)行判斷.【詳解】點(diǎn)P在拋物線上,設(shè)點(diǎn)P(x,ax2+bx+c),又因點(diǎn)P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點(diǎn),∴方程ax2+(b-1)x+c=0有兩個正實(shí)數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點(diǎn),又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.3、B【解析】

先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可.【詳解】如圖1中,∵等邊△DEF的邊長為2π,等邊△ABC的邊長為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,

∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運(yùn)動過程中所掃過的區(qū)域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故選B.【點(diǎn)睛】本題考查軌跡,弧長公式,萊洛三角形的周長,矩形,扇形面積公式,解題的關(guān)鍵是判斷出萊洛三角形繞等邊△DEF掃過的圖形.4、B【解析】

先把分式進(jìn)行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.5、C【解析】

根據(jù)圓錐的底面周長等于側(cè)面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,

設(shè)圓錐的底面半徑是rcm,

則,

解得:.

即這個圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.

圓錐形冰淇淋紙?zhí)椎母邽椋?/p>

故選:C.【點(diǎn)睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應(yīng)關(guān)系:圓錐的母線長等于側(cè)面展開圖的扇形半徑;圓錐的底面周長等于側(cè)面展開圖的扇形弧長正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.6、A【解析】試題解析:∵原來的平均數(shù)是13歲,∴13×23=299(歲),∴正確的平均數(shù)a=299-12∵原來的中位數(shù)13歲,將14歲寫成15歲,最中間的數(shù)還是13歲,∴b=13;故選A.考點(diǎn):1.平均數(shù);2.中位數(shù).7、D【解析】

連接OC、OD、BD,根據(jù)點(diǎn)C,D是半圓O的三等分點(diǎn),推導(dǎo)出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計(jì)算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點(diǎn)C、D是半圓O的三等分點(diǎn),∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點(diǎn)睛】本題主要考查扇形面積的計(jì)算和幾何概率問題:概率=相應(yīng)的面積與總面積之比,解題的關(guān)鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.8、A【解析】

解:∵四邊形ABCD為矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直線AE折疊,頂點(diǎn)D恰好落在BC邊上的F處,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC-BF=10-6=4,∴△CEF的周長為:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故選A.9、C【解析】

科學(xué)記數(shù)法,是指把一個大于10(或者小于1)的整數(shù)記為a×10n的形式(其中1≤|a|<10|)的記數(shù)法.【詳解】830萬=8300000=8.3×106.故選C【點(diǎn)睛】本題考核知識點(diǎn):科學(xué)記數(shù)法.解題關(guān)鍵點(diǎn):理解科學(xué)記數(shù)法的意義.10、C【解析】試題分析:=,∴點(diǎn)M(m,﹣m2﹣1),∴點(diǎn)M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故選C.考點(diǎn):二次函數(shù)的性質(zhì).11、B【解析】

由于總共有7個人,且他們的成績互不相同,第4的成績是中位數(shù),要判斷自己能否參加學(xué)校比賽,只需知道中位數(shù)即可.【詳解】由于總共有7個人,且他們的成績互不相同,第4的成績是中位數(shù),要判斷自己能否參加學(xué)校比賽,故應(yīng)知道中位數(shù)是多少.故選B.【點(diǎn)睛】本題考查了統(tǒng)計(jì)的有關(guān)知識,掌握平均數(shù)、中位數(shù)、眾數(shù)、方差的意義是解題的關(guān)鍵.12、C【解析】

解:∵關(guān)于x的一元二次方程有實(shí)數(shù)根,∴△==,解得m≥1,故選C.【點(diǎn)睛】本題考查一元二次方程根的判別式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、50°【解析】

利用平行線的性質(zhì)推出∠EFC=∠2=130°,再根據(jù)鄰補(bǔ)角的性質(zhì)即可解決問題.【詳解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案為50°【點(diǎn)睛】本題考查平行線的性質(zhì)、鄰補(bǔ)角的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考基礎(chǔ)題.14、﹣1<a<1【解析】

解:∵k>0,∴在圖象的每一支上,y隨x的增大而減小,①當(dāng)點(diǎn)(a-1,y1)、(a+1,y2)在圖象的同一支上,∵y1<y2,∴a-1>a+1,解得:無解;②當(dāng)點(diǎn)(a-1,y1)、(a+1,y2)在圖象的兩支上,∵y1<y2,∴a-1<0,a+1>0,解得:-1<a<1.故答案為:-1<a<1.【點(diǎn)睛】本題考查反比例函數(shù)的性質(zhì).15、1【解析】

先利用垂徑定理得到OD⊥BC,則BE=CE,再證明OE為△ABC的中位線得到,入境計(jì)算OD?OE即可.【詳解】解:∵BD=CD,∴,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE為△ABC的中位線,∴,∴DE=OD-OE=5-3=1.故答案為1.【點(diǎn)睛】此題考查垂徑定理,中位線的性質(zhì),解題的關(guān)鍵在于利用中位線的性質(zhì)求解.16、1【解析】試題分析:根據(jù)DE∥FG∥BC可得△ADE∽△AFG∽ABC,根據(jù)題意可得EG:AC=DF:AB=2:6=1:3,根據(jù)EG=3,則AC=1.考點(diǎn):三角形相似的應(yīng)用.17、y=x﹣1【解析】分析:根據(jù)互相平行的兩直線解析式的k值相等設(shè)出一次函數(shù)的解析式,再把點(diǎn)(﹣2,﹣4)的坐標(biāo)代入解析式求解即可.詳解:∵一次函數(shù)的圖象與直線y=x+1平行,∴設(shè)一次函數(shù)的解析式為y=x+b.∵一次函數(shù)經(jīng)過點(diǎn)(﹣2,﹣4),∴×(﹣2)+b=﹣4,解得:b=﹣1,所以這個一次函數(shù)的表達(dá)式是:y=x﹣1.故答案為y=x﹣1.點(diǎn)睛:本題考查了兩直線平行的問題,熟記平行直線的解析式的k值相等設(shè)出一次函數(shù)解析式是解題的關(guān)鍵.18、45或1【解析】

先根據(jù)題意畫出圖形,再根據(jù)勾股定理求出斜邊上的中線,最后即可求出斜邊的長.【詳解】①如圖:因?yàn)锳C=22+4點(diǎn)A是斜邊EF的中點(diǎn),所以EF=2AC=45,②如圖:因?yàn)锽D=32點(diǎn)D是斜邊EF的中點(diǎn),所以EF=2BD=1,綜上所述,原直角三角形紙片的斜邊長是45或1,故答案是:45或1.【點(diǎn)睛】此題考查了圖形的剪拼,解題的關(guān)鍵是能夠根據(jù)題意畫出圖形,在解題時要注意分兩種情況畫圖,不要漏解.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解析】

(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,求出BC、MC的長,利用平行線分線段成比例定理即可解決問題;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM?EB,由此構(gòu)建函數(shù)關(guān)系式即可解決問題;(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點(diǎn)G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問題;【詳解】解:(1)如圖1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四邊形AHCD是矩形,∵AD=DC=1,∴四邊形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM?EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點(diǎn)G,使得HG=DN,連接AG.則△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四邊形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,設(shè)DN=HM=x,則MN=2x,CN=CM=x,∴x+x=1,∴x=﹣1,∴CM=2﹣.【點(diǎn)睛】本題考查了正方形的判定與性質(zhì),平行線分線段成比例定理,勾股定理,相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì).熟練運(yùn)用平行線分線段成比例定理是解(1)的關(guān)鍵;證明△EAM∽△EBA是解(2)的關(guān)鍵;綜合運(yùn)用全等三角形的判定與性質(zhì)是解(3)的關(guān)鍵.20、(1)k=11;(1)C(2,0).【解析】試題分析:(1)首先求出點(diǎn)A的坐標(biāo)為(1,6),把點(diǎn)A(1,6)代入y=即可求出k的值;

(1)求出點(diǎn)B的坐標(biāo)為B(4,2),設(shè)直線BC的解析式為y=2x+b,把點(diǎn)B(4,2)代入求出b=-9,得出直線BC的解析式為y=2x-9,求出當(dāng)y=0時,x=2即可.試題解析:(1)∵點(diǎn)A在直線y=2x上,其橫坐標(biāo)為1.∴y=2×1=6,∴A(1,6),把點(diǎn)A(1,6)代入,得,解得:k=11;(1)由(1)得:,∵點(diǎn)B為此反比例函數(shù)圖象上一點(diǎn),其縱坐標(biāo)為2,∴,解得x=

4,∴B(4,2),∵CB∥OA,∴設(shè)直線BC的解析式為y=2x+b,把點(diǎn)B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,∴直線BC的解析式為y=2x﹣9,當(dāng)y=0時,2x﹣9=0,解得:x=2,∴C(2,0).21、證明見解析.【解析】

(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據(jù)垂直可得出∠DBE=∠CBE=30°,繼而可根據(jù)SAS證明△BDE≌△BCE;(2)根據(jù)(1)以及旋轉(zhuǎn)的性質(zhì)可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【詳解】(1)證明:∵△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉(zhuǎn)而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點(diǎn):旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.22、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當(dāng)a=時,D、O、C、B四點(diǎn)共圓.【解析】【分析】(1)根據(jù)二次函數(shù)的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(jù)(1)中A、B、D的坐標(biāo),得出拋物線對稱軸x=,AO=a,OD=3a,代入求得頂點(diǎn)C(,-),從而得PB=3-=,PC=;再分情況討論:①當(dāng)△AOD∽△BPC時,根據(jù)相似三角形性質(zhì)得,

解得:a=3(舍去);②△AOD∽△CPB,根據(jù)相似三角形性質(zhì)得,解得:a1=3(舍),a2=;(3)能;連接BD,取BD中點(diǎn)M,根據(jù)已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點(diǎn)C也在此圓上,則MC=MB,根據(jù)兩點(diǎn)間的距離公式得一個關(guān)于a的方程,解之即可得出答案.【詳解】(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),∴A(a,0),B(3,0),當(dāng)x=0時,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴對稱軸x=,AO=a,OD=3a,當(dāng)x=時,y=-,∴C(,-),∴PB=3-=,PC=,①當(dāng)△AOD∽△BPC時,∴,即,

解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.綜上所述:a的值為;(3)能;連接BD,取BD中點(diǎn)M,∵D、B、O三點(diǎn)共圓,且BD為直徑,圓心為M(,a),若點(diǎn)C也在此圓上,∴MC=MB,∴,化簡得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=,∴當(dāng)a=時,D、O、C、B四點(diǎn)共圓.【點(diǎn)睛】本題考查了二次函數(shù)、相似三角形的性質(zhì)、四點(diǎn)共圓等,綜合性較強(qiáng),有一定的難度,正確進(jìn)行分析,熟練應(yīng)用相關(guān)知識是解題的關(guān)鍵.23、(1)a=1;(2)C(0,﹣4)或(0,0).【解析】

(1)把A(3,n)代入y=(x>0)求得n的值,即可得A點(diǎn)坐標(biāo),再把A點(diǎn)坐標(biāo)代入一次函數(shù)y=ax﹣2可得a的值;(2)先求出一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交點(diǎn)B的坐標(biāo),再分兩種情況(①當(dāng)C點(diǎn)在y軸的正半軸上或原點(diǎn)時;②當(dāng)C點(diǎn)在y軸的負(fù)半軸上時)求點(diǎn)C的坐標(biāo)即可.【詳解】(1)∵函數(shù)y=(x>0)的圖象過(3,n),∴3n=3,n=1,∴A(3,1)∵一次函數(shù)y=ax﹣2(a≠0)的圖象過點(diǎn)A(3,1),∴1=3a﹣1,解得a=1;(2)∵一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點(diǎn)B,∴B(0,﹣2),①當(dāng)C點(diǎn)在y軸的正半軸上或原點(diǎn)時,設(shè)C(0,m),∵S△ABC=2S△AOB,∴×(m+2)×3=2××3,解得:m=0,②當(dāng)C點(diǎn)在y軸的負(fù)半軸上時,設(shè)(0,h),∵S△ABC=2S△AOB,∴×(﹣2﹣h)×3=2××3,解得:h=﹣4,∴C(0,﹣4)或(0,0).【點(diǎn)睛】本題主要考查了一次函數(shù)與反比例函數(shù)交點(diǎn)問題,解決第(2)問時要注意分類討論,不要漏解.24、,【解析】分析:先把分值分母因式分解后約分,再進(jìn)行通分得到原式=,然后把x的值代入計(jì)算即可.詳解:原式=?﹣1=﹣=當(dāng)x=+1時,原式==.點(diǎn)睛:本題考查了分式的化簡求值:先把分式化簡后,再把分式中未知數(shù)對應(yīng)的值代入求出分式的值.25、(1)y=-12x+2,y=-6x【解析】試題分析:(1)根據(jù)已知條件求出A、B、C點(diǎn)坐標(biāo),用待定系數(shù)法求出直線AB和反比例函數(shù)的解析式;(2)聯(lián)立一次函數(shù)的解析式和反比例的函數(shù)解析式可得交點(diǎn)D的坐標(biāo),從而根據(jù)三角形面積公式求解;(3)根據(jù)函數(shù)的圖象和交點(diǎn)坐標(biāo)即可求解.試題解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論