2023-2024學年陜西西安科技大學附屬中學初中數學畢業(yè)考試模擬沖刺卷含解析_第1頁
2023-2024學年陜西西安科技大學附屬中學初中數學畢業(yè)考試模擬沖刺卷含解析_第2頁
2023-2024學年陜西西安科技大學附屬中學初中數學畢業(yè)考試模擬沖刺卷含解析_第3頁
2023-2024學年陜西西安科技大學附屬中學初中數學畢業(yè)考試模擬沖刺卷含解析_第4頁
2023-2024學年陜西西安科技大學附屬中學初中數學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年陜西西安科技大學附屬中學初中數學畢業(yè)考試模擬沖刺卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,矩形ABCD中,AB=4,BC=3,F是AB中點,以點A為圓心,AD為半徑作弧交AB于點E,以點B為圓心,BF為半徑作弧交BC于點G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.62.益陽市高新區(qū)某廠今年新招聘一批員工,他們中不同文化程度的人數見下表:文化程度高中大專本科碩士博士人數9172095關于這組文化程度的人數數據,以下說法正確的是:()A.眾數是20 B.中位數是17 C.平均數是12 D.方差是263.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1,其中正確的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤4.如圖,△ABC紙片中,∠A=56,∠C=88°.沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD.則∠BDE的度數為()A.76° B.74° C.72° D.70°5.二次函數y=ax2+bx+c(a≠0)的圖象如圖,下列結論正確的是()A.a<0 B.b2-4ac<0 C.當-1<x<3時,y>0 D.-=16.如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F,則DE的長是()A. B. C.1 D.7.的相反數是()A. B. C.3 D.-38.如圖,在半徑為5的⊙O中,弦AB=6,點C是優(yōu)弧上一點(不與A,B重合),則cosC的值為()A. B. C. D.9.如右圖,⊿ABC內接于⊙O,若∠OAB=28°則∠C的大小為()A.62° B.56° C.60° D.28°10.下列運算正確的是()A.a3?a2=a6 B.(a2)3=a5 C.=3 D.2+=2二、填空題(共7小題,每小題3分,滿分21分)11.函數y=的自變量x的取值范圍是_____.12.如圖所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點A為圓心,小于AC的長為半徑畫弧,分別交AB,AC于點E,F;②分別以點E,F為圓心,大于EF的長為半徑畫弧,兩弧相交于點G;③作射線AG交BC邊于點D.則∠ADC的度數為.

13.如圖,四邊形ABCD中,點P是對角線BD的中點,點E,F分別是AB,CD的中點,AD=BC,∠PEF=35°,則∠PFE的度數是_____.14.如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以OA、OB為直徑作半圓,則圖中陰影部分的面積為_____.15.如圖,在平面直角坐標系中,二次函數y=ax2+c(a≠0)的圖象過正方形ABOC的三個頂點A,B,C,則ac的值是________.16.化簡3m﹣2(m﹣n)的結果為_____.17.如圖,等邊三角形ABC內接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.三、解答題(共7小題,滿分69分)18.(10分)計算:2tan45°-(-)o-19.(5分)解不等式,并把它的解集表示在數軸上.20.(8分)如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)線段AC,AG,AH什么關系?請說明理由;設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.21.(10分)列方程或方程組解應用題:去年暑期,某地由于暴雨導致電路中斷,該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發(fā),10分鐘后,電工乘吉普車從同一地點出發(fā),結果他們同時到達搶修工地.已知吉普車速度是搶修車速度的1.5倍,求吉普車的速度.22.(10分)如圖,矩形中,點是線段上一動點,為的中點,的延長線交BC于.(1)求證:;(2)若,,從點出發(fā),以l的速度向運動(不與重合).設點運動時間為,請用表示的長;并求為何值時,四邊形是菱形.23.(12分)如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.(1)求證:AE是⊙O的切線;(2)如果AB=4,AE=2,求⊙O的半徑.24.(14分)為了了解同學們每月零花錢的數額,校園小記者隨機調查了本校部分同學,根據調查結果,繪制出了如下兩個尚不完整的統(tǒng)計圖表.調查結果統(tǒng)計表組別分組(單位:元)人數A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bEx≥1202請根據以上圖表,解答下列問題:填空:這次被調查的同學共有人,a+b=,m=;求扇形統(tǒng)計圖中扇形C的圓心角度數;該校共有學生1000人,請估計每月零花錢的數額x在60≤x<120范圍的人數.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據圖形可以求得BF的長,然后根據圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F是AB中點,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.【點睛】本題考查扇形面積的計算、矩形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.2、C【解析】

根據眾數、中位數、平均數以及方差的概念求解.【詳解】A、這組數據中9出現的次數最多,眾數為9,故本選項錯誤;B、因為共有5組,所以第3組的人數為中位數,即9是中位數,故本選項錯誤;C、平均數==12,故本選項正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項錯誤.故選C.【點睛】本題考查了中位數、平均數、眾數的知識,解答本題的關鍵是掌握各知識點的概念.3、C【解析】試題解析:∵拋物線的頂點坐標A(1,3),∴拋物線的對稱軸為直線x=-=1,∴2a+b=0,所以①正確;∵拋物線開口向下,∴a<0,∴b=-2a>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以②錯誤;∵拋物線的頂點坐標A(1,3),∴x=1時,二次函數有最大值,∴方程ax2+bx+c=3有兩個相等的實數根,所以③正確;∵拋物線與x軸的一個交點為(4,0)而拋物線的對稱軸為直線x=1,∴拋物線與x軸的另一個交點為(-2,0),所以④錯誤;∵拋物線y1=ax2+bx+c與直線y2=mx+n(m≠0)交于A(1,3),B點(4,0)∴當1<x<4時,y2<y1,所以⑤正確.故選C.考點:1.二次函數圖象與系數的關系;2.拋物線與x軸的交點.4、B【解析】

直接利用三角形內角和定理得出∠ABC的度數,再利用翻折變換的性質得出∠BDE的度數.【詳解】解:∵∠A=56°,∠C=88°,

∴∠ABC=180°-56°-88°=36°,

∵沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,

∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,

∴∠BDE=180°-18°-88°=74°.

故選:B.【點睛】此題主要考查了三角形內角和定理,正確掌握三角形內角和定理是解題關鍵.5、D【解析】試題分析:根據二次函數的圖象和性質進行判斷即可.解:∵拋物線開口向上,∴∴A選項錯誤,∵拋物線與x軸有兩個交點,∴∴B選項錯誤,由圖象可知,當-1<x<3時,y<0∴C選項錯誤,由拋物線的軸對稱性及與x軸的兩個交點分別為(-1,0)和(3,0)可知對稱軸為即-=1,∴D選項正確,故選D.6、D【解析】

過F作FH⊥AE于H,根據矩形的性質得到AB=CD,AB//CD,推出四邊形AECF是平行四邊形,根據平行四邊形的性質得到AF=CE,根據相似三角形的性質得到,于是得到AE=AF,列方程即可得到結論.【詳解】解:如圖:解:過F作FH⊥AE于H,四邊形ABCD是矩形,AB=CD,AB∥CD,AE//CF,四邊形AECF是平行四邊形,AF=CE,DE=BF,AF=3-DE,AE=,∠FHA=∠D=∠DAF=,∠AFH+∠HAF=∠DAE+∠FAH=90,∠DAE=∠AFH,△ADE~△AFH,AE=AF,,DE=,故選D.【點睛】本題主要考查平行四邊形的性質及三角形相似,做合適的輔助線是解本題的關鍵.7、B【解析】先求的絕對值,再求其相反數:根據數軸上某個數與原點的距離叫做這個數的絕對值的定義,在數軸上,點到原點的距離是,所以的絕對值是;相反數的定義是:如果兩個數只有符號不同,我們稱其中一個數為另一個數的相反數,特別地,1的相反數還是1.因此的相反數是.故選B.8、D【解析】解:作直徑AD,連結BD,如圖.∵AD為直徑,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故選D.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了解直角三角形.9、A【解析】

連接OB.在△OAB中,OA=OB(⊙O的半徑),∴∠OAB=∠OBA(等邊對等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所對的圓周角是所對的圓心角的一半),∴∠C=62°;故選A10、C【解析】

結合選項分別進行冪的乘方和積的乘方、同底數冪的乘法、實數的運算等運算,然后選擇正確選項.【詳解】解:A.a3a2=a5,原式計算錯誤,故本選項錯誤;B.(a2)3=a6,原式計算錯誤,故本選項錯誤;C.=3,原式計算正確,故本選項正確;D.2和不是同類項,不能合并,故本選項錯誤.故選C.【點睛】本題考查了冪的乘方與積的乘方,實數的運算,同底數冪的乘法,解題的關鍵是冪的運算法則.二、填空題(共7小題,每小題3分,滿分21分)11、x≥﹣且x≠1【解析】分析:根據被開方數大于等于0,分母不等于0列式求解即可.詳解:根據題意得2x+1≥0,x-1≠0,解得x≥-且x≠1.故答案為x≥-且x≠1.點睛:本題主要考查了函數自變量的取值范圍的確定,根據分母不等于0,被開方數大于等于0列式計算即可,是基礎題,比較簡單.12、65°【解析】

根據已知條件中的作圖步驟知,AG是∠CAB的平分線,根據角平分線的性質解答即可.【詳解】根據已知條件中的作圖步驟知,AG是∠CAB的平分線,∵∠CAB=50°,

∴∠CAD=25°;

在△ADC中,∠C=90°,∠CAD=25°,

∴∠ADC=65°(直角三角形中的兩個銳角互余);

故答案是:65°.13、35°【解析】∵四邊形ABCD中,點P是對角線BD的中點,點E,F分別是AB,CD的中點,∴PE是△ABD的中位線,PF是△BDC的中位線,∴PE=AD,PF=BC,又∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=35°.故答案為35°.14、﹣1.【解析】試題分析:假設出扇形半徑,再表示出半圓面積,以及扇形面積,進而即可表示出兩部分P,Q面積相等.連接AB,OD,根據兩半圓的直徑相等可知∠AOD=∠BOD=45°,故可得出綠色部分的面積=S△AOD,利用陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色,故可得出結論.解:∵扇形OAB的圓心角為90°,扇形半徑為2,∴扇形面積為:=π(cm2),半圓面積為:×π×12=(cm2),∴SQ+SM=SM+SP=(cm2),∴SQ=SP,連接AB,OD,∵兩半圓的直徑相等,∴∠AOD=∠BOD=45°,∴S綠色=S△AOD=×2×1=1(cm2),∴陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色=π﹣﹣1=﹣1(cm2).故答案為﹣1.考點:扇形面積的計算.15、-1.【解析】

設正方形的對角線OA長為1m,根據正方形的性質則可得出B、C坐標,代入二次函數y=ax1+c中,即可求出a和c,從而求積.【詳解】設正方形的對角線OA長為1m,則B(﹣m,m),C(m,m),A(0,1m);把A,C的坐標代入解析式可得:c=1m①,am1+c=m②,①代入②得:am1+1m=m,解得:a=-,則ac=-1m=-1.考點:二次函數綜合題.16、m+2n【解析】分析:先去括號,再合并同類項即可得.詳解:原式=3m-2m+2n=m+2n,故答案為:m+2n.點睛:本題主要考查整式的加減,解題的關鍵是掌握去括號與合并同類項的法則.17、【解析】

分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關鍵是求圓心角的度數.本題考查組合圖形的求法.扇形面積公式等.詳解:連結OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點睛:本題考查了等邊三角形性質,扇形的面積,三角形的面積等知識點的應用,關鍵是求出∠AOC的度數,主要考查學生綜合運用定理進行推理和計算的能力.三、解答題(共7小題,滿分69分)18、2-【解析】

先求三角函數,再根據實數混合運算法計算.【詳解】解:原式=2×1-1-=1+1-=2-【點睛】此題重點考察學生對三角函數值的應用,掌握特殊角的三角函數值是解題的關鍵.19、x<5;數軸見解析【解析】【分析】將(x-2)當做一個整體,先移項,然后再按解一元一次不等式的一般步驟進行求解,求得解集后在數軸上表示即可.【詳解】移項,得,去分母,得,移項,得,∴不等式的解集為,在數軸上表示如圖所示:【點睛】本題考查了解一元一次不等式,在數軸上表示不等式的解集,根據不等式的特點選擇恰當的方法進行求解是關鍵.20、(1)=;(2)結論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】

(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC=GH時,易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當CH=HG時,易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.3.在BC上取一點M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【點睛】本題屬于四邊形綜合題,考查了正方形的性質,全等三角形的判定和性質,相似三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題.21、吉普車的速度為30千米/時.【解析】

先設搶修車的速度為x千米/時,則吉普車的速度為1.5x千米/時,列出方程求出x的值,再進行檢驗,即可求出答案.【詳解】解:設搶修車的速度為x千米/時,則吉普車的速度為15x千米/時.由題意得:.解得,x=20經檢驗,x=20是原方程的解,并且x=20,1.5x=30都符合題意.答:吉普車的速度為30千米/時.點評:本題難度中等,主要考查學生對分式方程實際應用的綜合運用.為中考常見題型,要求學生牢固掌握.注意檢驗.22、(1)證明見解析;(2)PD=8-t,運動時間為秒時,四邊形PBQD是菱形.【解析】

(1)先根據四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據O為BD的中點得出△POD≌△QOB,即可證得OP=OQ;(2)根據已知條件得出∠A的度數,再根據AD=8cm,AB=6cm,得出BD和OD的長,再根據四邊形PBQD是菱形時,利用勾股定理即可求出t的值,判斷出四邊形PBQD是菱形.【詳解】(1)∵四邊形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,又∵O為BD的中點,∴OB=OD,在△POD與△QOB中,,∴△POD≌△QOB,∴OP=OQ;(2)PD=8-t,∵四邊形PBQD是菱形,∴BP=PD=8-t,∵四邊形ABCD是矩形,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論