




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年江蘇省鹽城市亭湖區(qū)景山中學(xué)七年級(jí)(下)期末
數(shù)學(xué)試卷
一、選擇題(本大題共8小題,共16.0分。在每小題列出的選項(xiàng)中,選出符合題目的一項(xiàng))
1.下面有4個(gè)汽車標(biāo)致圖案,其中不是軸對(duì)稱圖形的是()
<70BaC三
2.下列計(jì)算正確的是()
A.2x+3y=6xyB.m-m-m=3mC.a10-r-a4=a6D.(—2^2)3=8b6
3.若?n>n,則下列不等式正確的是()
A.m—2<n—2B.C.6m<6nD.-8m>—8n
4.下列命題中是真命題的是()
A.如果a+Z?<0,那么ab<0B.內(nèi)錯(cuò)角相等
C.三角形的內(nèi)角和等于180。D.相等的角是對(duì)頂角
5.刻度尺上的一小格為1毫米,1納米等于一百萬(wàn)分之一毫米,那么3xIO]。納米大約是()
A.一支鉛筆的長(zhǎng)度B.姚明的身高C.十層大樓的高度D.珠穆朗瑪峰的高度
6.如圖,已知太陽(yáng)光線4C和OE是平行的,在同一時(shí)刻兩根高度/D/
相同的木桿豎直插在地面上,在太陽(yáng)光照射下,其影子一樣長(zhǎng).這//
里判斷影長(zhǎng)相等利用了全等圖形的性質(zhì),其中判斷小ABC=LDFE/-I-I
CBEF
的依據(jù)是()
A.SASB.AASC.HLD.ASA
7.如圖,小磊將含45。角的直角三角尺放在了畫(huà)有平行線的作業(yè)本上,一
已知Na=37。,則N0的度數(shù)為()分、------
A.53°/
B.37°—工
C.67°
D.82°
8.葉子是植物進(jìn)行光合作用的重要部分,研究植物的生長(zhǎng)情況會(huì)關(guān)注葉面的面積.在研究水
稻等農(nóng)作物的生長(zhǎng)時(shí),經(jīng)常用一個(gè)簡(jiǎn)潔的經(jīng)驗(yàn)公式S4來(lái)估算葉面的面積,其中a,b分別
是稻葉的長(zhǎng)和寬(如圖1),k是常數(shù).試驗(yàn)小組采集了某個(gè)品種的稻葉的一些樣本,發(fā)現(xiàn)絕大部
分稻葉的形狀比較狹長(zhǎng)(如圖2),大致都在稻葉的,處“收尖”.根據(jù)圖2進(jìn)行估算,對(duì)于此品種
的稻葉,經(jīng)驗(yàn)公式中k的值約為()
二、填空題(本大題共10小題,共20.0分)
9.若3a=6,3b=2,則3a+b=.
10.某花店打算制作一批有兩邊長(zhǎng)分別是7分米,3分米,第三邊長(zhǎng)為奇數(shù)(單位:分米)的不
同規(guī)格的三角形木框.要制作滿足上述條件的三角形木框共有種.
11.一個(gè)多邊形的內(nèi)角和是它的外角和的3倍,則這個(gè)多邊形的邊數(shù)為
12.寫(xiě)出命題“如果ab=0,那么a=0或b=0.”的逆命題:.
13.關(guān)于x,y的方程組7n+1的解滿足》一'=6,則血=.
14.若關(guān)于x的二次三項(xiàng)式4/+mx+36是完全平方式,則m的值為
15.如圖,2ABC三ADBE,Z.ABC=80°,Z.D=65°,則4c
的度數(shù)為
16.關(guān)于%的方程3%+2(3m+1)=6%+m的解大于1,則m的取值范圍是.
17.如圖,△ABC沿E尸折疊使點(diǎn)4落在點(diǎn)4處,BP、CP分別是乙/BD、44co平分線,若乙P=
30°,WEB=20°,則乙4下C=
DBC
18.己知:△ABC中,^ACB=90°,AC=CB,0為射線CB上一動(dòng)點(diǎn),
連接力D,在直線AC右側(cè)作AE1AD,且AE=AD.連接BE交直線AC于M,
若24C=7CM,則含黑的值為_(kāi)_____.
SLAEM
三、解答題(本大題共9小題,共64.0分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟)
19.(本小題6.0分)
(1)計(jì)算:(一1)2023+(—2尸+(兀-1)0+(-1)-2;
(2)先化簡(jiǎn),再求值:(x-y)(x+2y)-(-x+y)2,其中x=2,y=-1.
20.(本小題6.0分)
分解因式:
(l)x2y-9y;
(2)(m2+n2)2-4n12nz.
21.(本小題6.0分)
⑴解方程組:{史案;;;
(X+3<2(%+2)
(2)解不等式組、3%-1.
匕+12,
22.(本小題6.0分)
已知:如圖,BC//EF,BC=EF,AB=DE.
求證:(l)Zi4BC三AOEF;
(2)AC//DF.
23.(本小題6.0分)
如圖,陰影部分是由5個(gè)小正方形組成的一個(gè)直角圖形,請(qǐng)用四種方法分別在如圖方格內(nèi)添涂
黑二個(gè)小正方形,使陰影部分成為軸對(duì)稱圖形.
24.(本小題8.0分)
如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時(shí)秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=
3nL小亮在蕩秋千過(guò)程中,當(dāng)秋千擺動(dòng)到最高點(diǎn)4時(shí),測(cè)得點(diǎn)4到BD的距離4。=2m,點(diǎn)4到
地面的距離4E=1.8小;當(dāng)他從4處擺動(dòng)到A處時(shí),有48148.
(1)求4到BD的距離;
(2)求A到地面的距離.
25.(本小題8.0分)
我市在創(chuàng)建全國(guó)文明城市過(guò)程中,決定購(gòu)買4B兩種樹(shù)苗對(duì)某路段道路進(jìn)行綠化改造,已知
購(gòu)買4種樹(shù)苗8棵,B種樹(shù)苗2棵,需要900元;購(gòu)買4種樹(shù)苗5棵,B種樹(shù)苗4棵,需要700元.
(1)求購(gòu)買4,B兩種樹(shù)苗每棵各需多少元?
(2)考慮到綠化效果和資金周轉(zhuǎn),購(gòu)進(jìn)4種樹(shù)苗不能少于32棵,且用于購(gòu)買這兩種樹(shù)苗的資金
不能超過(guò)5750元,若購(gòu)進(jìn)這兩種樹(shù)苗共80棵,則有哪幾種購(gòu)買方案?
26.(本小題8.0分)
完全平方公式:(a±b)2=a2+2ab+/適當(dāng)?shù)淖冃?,可以解決很多的數(shù)學(xué)問(wèn)題.例如:若a+
b=3,ab=1,求a2+f)2的值;
解:因?yàn)閍+b=3,所以(a+b)2=9,即:a?+2ab+b2=9,又因?yàn)閍b=1,所以a?+b2=7.
根據(jù)上面的解題思路與方法,解決下列問(wèn)題:
(1)若x+y=8,x2+y2=40,求xy的值;
(2)若(4-x)x=5,求(4-x)2+/的值;
(3)如圖,在長(zhǎng)方形4BCD中,AB=25,BC=15,點(diǎn)E,尸是BC、CD上的點(diǎn),且BE=DF=x,
分別以尸C、CE為邊在長(zhǎng)方形ABC。外側(cè)作正方形CFGH和CEMN,若長(zhǎng)方形CEPF的面積為200
平方單位,求圖中陰影部分的面積和.
27.(本小題10.0分)
【嘗試探究】如圖1,已知在正方形ZBCD中(四邊相等,四個(gè)內(nèi)角均為90。),點(diǎn)E、F分別在
邊BC、DC上運(yùn)動(dòng),當(dāng)NE4F=45。時(shí),探究DF、BE和EF的數(shù)量關(guān)系,并加以說(shuō)明;
【模型建立】如圖2,若將直角三角形4BC沿斜邊翻折得到△40C,且NB==90。,點(diǎn)E、
F分別在邊DC、BC上運(yùn)動(dòng),且=試猜想(2)中的結(jié)論還成立嗎?請(qǐng)加以說(shuō)明;
【拓展應(yīng)用】如圖3,已知AABC是邊長(zhǎng)為8的等邊三角形(三邊相等,三個(gè)內(nèi)角均為60。),BO=
CD,ABDC=120°,L.DBC=/.BCD=30%以。為頂點(diǎn)作個(gè)60。角,使其角的兩邊分別交
邊AB、4C于點(diǎn)E、F,連接EF,直接寫(xiě)出A/IEF的周長(zhǎng).
圖1圖2圖3
答案和解析
1.【答案】D
【解析】解:由軸對(duì)稱圖形的概念可知第1個(gè),第2個(gè),第3個(gè)都是軸對(duì)稱圖形.
第4個(gè)不是軸對(duì)稱圖形,是中心對(duì)稱圖形.
故選D.
根據(jù)軸對(duì)稱圖形的概念結(jié)合4個(gè)汽車標(biāo)志圖案的形狀求解.
本題考查了軸對(duì)稱圖形的知識(shí),軸對(duì)稱的關(guān)鍵是尋找對(duì)稱軸,兩邊圖象折疊后可重合.
2.【答案】C
【解析】解:42x和3y不是同類項(xiàng),并不能合并,原計(jì)算錯(cuò)誤,不符合題意;
B、m-m-m=m3,原計(jì)算錯(cuò)誤,不符合題意;
C、a10^a4=a6,原計(jì)算正確,符合題意;
D、(一2爐)3=_8於,原計(jì)算錯(cuò)誤,不符合題意,
故選:C.
根據(jù)合并同類項(xiàng)、同底數(shù)幕乘法、同底數(shù)幕除法、積的乘方逐一計(jì)算即可判斷答案.
本題考查了合并同類項(xiàng)、同底數(shù)累乘法、同底數(shù)累除法、積的乘方,熟練掌握相關(guān)運(yùn)算法則是解
題關(guān)鍵.
3.【答案】B
【解析】解:根據(jù)不等式的性質(zhì),
"m>n,
m-2>n—2,-8m<—8n,6m>6n,,
故A、D、C錯(cuò)誤,8正確.
故選:B.
①不等式的兩邊同時(shí)加上(或減去)同一個(gè)數(shù)或同一個(gè)含有字母的式子,不等號(hào)的方向不變;
②不等式的兩邊同時(shí)乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;
③不等式的兩邊同時(shí)乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變.
本題考查了不等式的性質(zhì),熟記不等式的性質(zhì)是解題的關(guān)鍵.
4.【答案】C
【解析】解:4、當(dāng)a=-1,b=—2時(shí),a+b=—3<0,ab=2>0,
則如果a+6<0,那么ab<0,是假命題;
以兩直線平行,內(nèi)錯(cuò)角相等,本選項(xiàng)說(shuō)法是假命題;
C、三角形的內(nèi)角和等于180。,是真命題;
。、相等的角不一定是對(duì)頂角,本選項(xiàng)說(shuō)法是假命題;
故選:C.
根據(jù)有理數(shù)的加法法則、乘法法則,平行線的性質(zhì)、三角形內(nèi)角和定理、對(duì)頂角的概念判斷即可.
本題考查的是命題的真假判斷,正確的命題叫真命題,錯(cuò)誤的命題叫做假命題.判斷命題的真假
關(guān)鍵是要熟悉課本中的性質(zhì)定理.
5.【答案】C
【解析】解:3xIO10x10-6毫米=3xIO”毫米=30米,
即3xIO]。納米大約是十層大樓的高度,
故選:C.
科學(xué)記數(shù)法的表示形式為ax10"的形式,其中n為整數(shù).確定n的值時(shí),要看把原
數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值之10時(shí),
n是正整數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)整數(shù).
此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為ax10"的形式,其中l(wèi)w|a|<10,n
為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.
6.【答案】B
【解析】解:"AC//DE,
??Z.ACB=/.DEF,
??,兩根高度相同的木桿豎直插在地面上,
???AB=DF,AABC=乙DFE=90°,
/.ACB=Z.DEF
在4>4CSfOADEF中=乙DFE,
.AB=DF
:AABCmADFE(AAS),
故選:B.
根據(jù)平行線的性質(zhì)可得乙4cB=NDEF,根據(jù)題意可得力B=DF,乙48c=NDFE=90。,然后利
用A4s判定△ABC^^DFE.
此題主要考查全等三角形的應(yīng)用,關(guān)鍵是掌握全等三角形的判定方法.
7.【答案】D
【解析】解:???圖形中的橫線是平行線,_______K_____
???Z1—4,Z.3—4a=37。,
???三角尺是等腰直角三角形,------的盧-----
???Z2=45°,"
v41=42+43=45°+37°=82°,
/£=41=82°.
故選:D.
由平行線的性質(zhì)得到N1=40,43=4a=37°,由三角形外角的性質(zhì)得到41=42+43,即可求
出“.
本題考查平行線的性質(zhì),等腰直角三角形,三角形外角的性質(zhì),關(guān)鍵是由平行線的性質(zhì)得到41=
邛,43=Na=37。,應(yīng)用三角形外角的性質(zhì)即可求解.
8.【答案】D
【解析】解:由圖1可知,矩形的面積大于葉的面積,即S<ab,
,S=%<ab,
k>1,
由圖2可知,葉片的尖端可以近似看作等腰三角形,
二稻葉可以分為等腰三角形及矩形兩部分,
矩形的長(zhǎng)為43等腰三角形的高為33稻葉的寬為b,
.7tb14q_
???k=j-------------=77、1-2o7
^x3tb+4tb11
故選:D.
根據(jù)矩形的面積大于葉的面積,即S<ab,可得k>1,再把葉片的尖端可以近似看作等腰三角形,
則稻葉可以分為等腰三角形及矩形兩部分,再求出k的大約值即可.
本題主要考查數(shù)據(jù)的處理及應(yīng)用,熟練掌握不等式的性質(zhì),理清題意,準(zhǔn)確找出等量關(guān)系時(shí)解答
此題的關(guān)鍵.
9.【答案】12
【解析】解:1.13a=6,3b=2,
二原式=3a-3b
=6x2
=12.
故答案為:12.
根據(jù)同底數(shù)幕的乘法運(yùn)算法則即可求出答案.
本題考查同底數(shù)事的乘法,解題的關(guān)鍵是熟練運(yùn)用同底數(shù)基的乘法,本題屬于基礎(chǔ)題型.
10.【答案】3
【解析】解:設(shè)第三邊長(zhǎng)為x分米,
則三角形的第三邊x滿足:7—3<》<3+7,即4<x<10.
因?yàn)榈谌呴L(zhǎng)為奇數(shù),
所以第三邊可以為5分米、7分米或9分米.
故要制作滿足上述條件的三角形木框共有3種.
故答案為:3.
根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,確定第三邊的取值范圍,
從而確定符合條件的三角形的個(gè)數(shù).
本題主要考查三角形三邊關(guān)系的應(yīng)用,注意熟練運(yùn)用在三角形中任意兩邊之和大于第三邊,任意
兩邊之差小于第三邊.
11.【答案】八
【解析】
【分析】
本題主要考查了多邊形的內(nèi)角和公式與外角和定理,根據(jù)題意列出方程是解題的關(guān)鍵.
根據(jù)多邊形的內(nèi)角和定理,多邊形的內(nèi)角和等于(n-2”180。,外角和等于360。,然后列方程求
解即可.
【解答】
解:設(shè)多邊形的邊數(shù)是n,根據(jù)題意得,
(n-2)-180°=3x360°,
解得九=8.
所以這個(gè)多邊形為八邊形.
故答案為八.
12.【答案】如果a=0或b=0,那么ab=0
【解析】解:命題“如果ab=0,那么a=0或b=0.”的逆命題是如果a=0或b=0,那么ab=0,
故答案為:如果a=0或b=0.那么ab=0.
交換原命題的條件與結(jié)論即可得到原命題的逆命題.
本題考查命題與定理,解題的關(guān)鍵是掌握求逆命題的方法:交換原命題的條件與結(jié)論.
13.【答案】4
【解析】解:產(chǎn)+y=2八+i①,
[x+2y=3②
①—②,得:x-y=2m-2,
???2m—2=6,
???m=4.
故答案為:4.
將兩個(gè)方程相減,得到%-y=2m一2,再求m的值.
本題考查了二元一次方程組的解,要求學(xué)生在求出方程組的解進(jìn)行解題的方法外,還能掌握整體
思想快速求解.所以要求學(xué)生在解題時(shí)要先注意觀察題目,再求解.
14.【答案】±24
【解析】解:???二次三項(xiàng)式4/+巾%+36是完全平方式,
(2x+6)2=4%2+mx+36
:.m=±24.
故答案為:±24.
利用完全平方公式的結(jié)構(gòu)特征判斷即可得到結(jié)果.
此題考查了完全平方式,熟練掌握完全平方公式是解本題的關(guān)鍵.
15.【答案】35。
【解析】解:三△OBE,40=65°,
Z.BAC-Z.D=65°,
v/-ABC=80°,
/.zC=180°-/-ABC-Z-BAC=35°,
故答案為:35°.
根據(jù)全等三角形的對(duì)應(yīng)角相等得到=根據(jù)三角形內(nèi)角和定理計(jì)算,得到答案.
本題考查的是全等三角形的性質(zhì)、三角形內(nèi)角和定理,掌握全等三角形的對(duì)應(yīng)角相等是解題的關(guān)
鍵.
16.【答案】m>|
【解析】解:3%+2(3m4-1)=6%+m,
3x+6m+2=6%+
3x—6x=m—6m—2,
—3%=—5m—2,
5m+2
x=^~,
?.?方程的解大于1,
二手>1,
???5m+2>3,
5m>3—2,
5m>1,
、1
m>-,
故答案為:TH>|.
先解一元一次方程可得X=手,然后根據(jù)己知可得竽>1,再按照解一元一次不等式的步驟,
進(jìn)行計(jì)算即可解答.
本題考查了解一元一次不等式,一元一次方程的解,熟練掌握解一元一次不等式的步驟是解題的
關(guān)鍵.
17.【答案】140
【解析】解:如圖,
?:BP、CP分別是乙4BD、乙4CD平分線,
:.乙PBD=3乙ABD,乙BCP=3乙BCA.
又???Z.PBD="+乙PCB,
:.4P=乙PBD-乙PCB=^Z.ABD-*BC4=*4480-Z.ACB).
又???LABD=44+Z.ACB,
Z.ABD-Z.ACB=Z.A.
4P=g.
Z.A=2"=2x30°=60°.
由題意得:乙4'=乙4=60。.
???Z1=乙4'+WEB=60°+20°=80°.
???乙A'FC=〃+41=60°+80°=140°.
故答案為:140.
如圖,欲求乙4'FC,因?yàn)?4午。=乙4+41=乙4+乙4'+/4七8,所以僅需求乙4.根據(jù)三角形外角
的性質(zhì),得N4=N4BD一44cB.因?yàn)锽P、CP分別是N4BD、NAC。平分線,所以NA=2NPBO-
2乙PCB=2(乙PBD-乙PCB)=2乙P=60°,進(jìn)而可求出NA'FC.
本題主要考查三角形外角的性質(zhì)以及角平分線的定義,熟練掌握三角形外角的性質(zhì)以及角平分線
的定義是解決本題的關(guān)鍵.
18.【答案】
【解析】解:如圖,點(diǎn)。在的延長(zhǎng)線上,作EG14M交4M的延長(zhǎng)線于點(diǎn)G,則乙G=AACD=90°,
vZ-DAE=90°,
???/,GAE==90°-乙DAC,
在和△DC4中,
NG=Z.ACD
Z-GAE=乙D,
AE=DA
???△4GEwZkO&4(44S),
???AG=DC,EG=AC=BC,
AG-AC=DC-BC,
:,CG=DB,
???(BCM=180°-乙ACB=90°,
:.Z.G=乙BCM,
在仆EGMffiABCM中,
Z.G=心BCM
乙EMG=CBMC,
EG=BC
???△EGM為8CM(44S),
??.GM=CM,
設(shè)GM=CM=m,則DB=CG=2m,
???2AC=7CM,
7
.-.AC=-CM,
799
AAM=-CM+CM=-CM=-m,
111199
???S-DB=508?AC=5x2m-AC=m-4C,SAi4FM=-AM-EG=-x-m-AC=-m-AC,
...S&ADB_7幾4C_4
S-EM\m-AC9,
???鬻的值幅
如圖,點(diǎn)0在線段BC上,設(shè)CM=GM=n,則BD=CG=2n,
■?-2AC=7CM,
/MC=|7CM,
755
???AM=-CM==?
11i155
???SMDB~$DB?AC=-x2n-AC=n-AC,S^AEM=-AM-EG=-x-n-AC--n-AC,
.S^ADB_nAC_4
S"EM產(chǎn)4c5,
綜上所述,料也的值為:或g
^AAEM95
故答案為:靛尾.
作EG1AM交AM的延長(zhǎng)線于點(diǎn)G,先證明△AGE^LDCA,得AG=DC,EG=AC=BC,所以CG=
DB,可證明AEGM三ABCM,得GM=CM,再分兩點(diǎn)情況,一是點(diǎn)D在CB的延長(zhǎng)線上,設(shè)GM=
CM=m,則DB=CG=2m,由24c=7CM得4C=gCM,則4M=(CM+CM=gzn,于是得
S^ADB=m-AC,ShAEM=^m-AC,所以%3=$二是點(diǎn)D在線段8C上,設(shè)CM=GM=n,則
BD=CG=2n,則4M,于是得另力研=n?AC,ShAEM=^n-AC,所以把儂=£
此題重點(diǎn)考查等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、有關(guān)三角形的面積問(wèn)題的求解
等知識(shí)與方法,此題綜合性強(qiáng),難度較大,正確地作出所需要的輔助線是解題的關(guān)鍵.
19.[答案]解:(1)(一1)2023+(_2)3+(7r_1)。+(_》-2
=-1+(—8)+1+16
=-9+1+16
=8;
(2)(尤-y)(x+2y)-(-%+y)2
=x24-2xy—xy-2y2—(y2—2xy4-x2)
=x2+xy—2y2—y2+2xy—x2
=3xy—3y2,
當(dāng)K=2,y=-l時(shí),原式=3x2x(—1)—3x(—1)2
=-6-3x1
=—6—3
=一9.
【解析】(1)先化筒各式,然后再進(jìn)行計(jì)算即可解答;
(2)先去括號(hào),再合并同類項(xiàng),然后把久,y的值代入化簡(jiǎn)后的式子進(jìn)行計(jì)算,即可解答.
本題考查了整式的混合運(yùn)算-化簡(jiǎn)求值,完全平方公式,實(shí)數(shù)的運(yùn)算,零指數(shù)基,負(fù)整數(shù)指數(shù)累,
準(zhǔn)確熟練地進(jìn)行計(jì)算是解題的關(guān)鍵.
20.【答案】解:⑴-9y
=y(x2—9)
=y(x+3)(%-3);
(2)(m2+n2)2-4m2n2
=(m2+n2+2mn)^m2+n2—2nin)
=(m+n)2(m—n)2.
【解析】(1)先提公因式,再利用平方差公式繼續(xù)分解即可解答;
(2)先利用平方差公式,再利用完全平方公式繼續(xù)分解即可解答.
本題考查了提公因式法與公式法的綜合運(yùn)用,一定要注意如果多項(xiàng)式的各項(xiàng)含有公因式,必須先
提公因式.
21.【答案】解:⑴+聯(lián),
-6y=11@
①X2得:4x+6y=-2③,
②+③得:9%=9,
解得:x=1,
把x=1代入①得:
2+3y=-1,
解得:y=-1,
???原方程組的解為:I;1:1;
(%4-3<2(x+2)①
⑵注+1>生1②
解不等式①得:X>-1,
解不等式②得:%<3,
???原不等式組的解集為:—1<xW3.
【解析】(1)利用加減消元法,進(jìn)行計(jì)算即可解答;
(2)按照解一元一次不等式組的步驟,進(jìn)行計(jì)算即可解答.
本題考查了解一元一次不等式組,解二元一次方程組,準(zhǔn)確熟練地進(jìn)行計(jì)算是解題的關(guān)鍵.
22.【答案】證明:⑴???"〃",
:.Z.ABC=Z.E.
在AABC與中,
BC=EF
Z.ABC=Z-E,
AB=DE
:aABC"DEF(SAS)f
(2)???△/BCwADEF,
???Z4=乙FDE,
AAC//DF.
【解析】由平行線的性質(zhì)得出〃BC=NE.證明△ABC三4DEF{SAS},由全等三角形的性質(zhì)可得出
結(jié)論.
本題主要考查了全等三角形的判定與性質(zhì)及平行線的性質(zhì).根據(jù)條件證明出△4BC三△DEF是解題
的關(guān)鍵.
23.【答案】解:如圖所示:
【解析】本題考查了軸對(duì)稱的性質(zhì)和圖案設(shè)計(jì),熟練掌握軸對(duì)稱的定義是關(guān)鍵,屬于一般題.
利用軸對(duì)稱圖形的性質(zhì)進(jìn)而分析得出答案,涂黑二個(gè)小正方形后,以是否沿一條直線折疊后能重
合,作為依據(jù),能則組成軸對(duì)稱圖形,反之則不能.
24.【答案】解:(1)如圖2,作&F1BD,垂足為F.
vACLBD,
^ACB=乙A'FB=90°;
在RtA/1'FB中,41+43=90。;
又?:A'B1AB,???N1+42=90°,
:.N2=z_3;
在AACB和△BF4中,
Z.ACB=乙A'FB
z2=z3
.AB=A'B
.?.△ACB三△BFA'OIAS);
A'F=BC
?"C〃DE且CO1AC,AE1DE,
CD—AE—1.8(m);
???BC=BD-CD=3-1.8=1.2(m),
A'F=1.2(m),即力'到BD的距離是1.2m;
(2)由(1)知:△ACB=^BFA'
BF=AC=2m,
作4HJLDE,垂足為H.
vA'F//DE,
???A'H=FD,
:.A'H=BD-BF=3-2=l(m),
即力'到地面的距離是lrn.
【解析】本題考查全等三角形的應(yīng)用,解題的關(guān)鍵是正確尋找全等三角形全等的條件,靈活運(yùn)用
所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.
(1)作AF1BD,垂足為F,根據(jù)全等三角形的判定和性質(zhì)解答即可;
(2)根據(jù)全等三角形的性質(zhì)解答即可.
25.【答案】解:(1)設(shè)購(gòu)買4種樹(shù)苗每棵需x元,購(gòu)買B種樹(shù)苗每棵需y元,
根據(jù)題意得:黑髯:瑞
解得仁郡,
答:購(gòu)買4種樹(shù)苗每棵需100元,購(gòu)買B種樹(shù)苗每棵需50元;
(2)設(shè)購(gòu)買A種樹(shù)苗m棵,則購(gòu)買B種樹(shù)苗(80-m)棵,
???購(gòu)進(jìn)4種樹(shù)苗不能少于32棵,且用于購(gòu)買這兩種樹(shù)苗的資金不能超過(guò)5750元,
(m>32
[100m4-50(80-m)<5750,
解得32<m<35,
???zn是正整數(shù),
二zn可取32,33,34,35,
.,?有4種購(gòu)買方案:
①購(gòu)買4種樹(shù)苗32棵,購(gòu)買B種樹(shù)苗48棵,
②購(gòu)買4種樹(shù)苗33棵,購(gòu)買B種樹(shù)苗47棵,
③購(gòu)買A種樹(shù)苗34棵,購(gòu)買B種樹(shù)苗46棵,
④購(gòu)買4種樹(shù)苗35棵,購(gòu)買B種樹(shù)苗45棵.
【解析】(1)設(shè)購(gòu)買4種樹(shù)苗每棵需x元,購(gòu)買B種樹(shù)苗每棵需y元,根據(jù)“購(gòu)買A種樹(shù)苗8棵,B種
樹(shù)苗2棵,需要900元;購(gòu)買A種樹(shù)苗5棵,8種樹(shù)苗4棵,需要700元“可列出方程組解得答案.
(2)設(shè)購(gòu)買4種樹(shù)苗他棵,則購(gòu)買B種樹(shù)苗(80-爪)棵,根據(jù)“購(gòu)進(jìn)4種樹(shù)苗不能少于32棵,且用于
購(gòu)買這兩種樹(shù)苗的資金不能超過(guò)5750元“,可列不等式組解得32WmS35,即可得到答案.
本題考查二元一次方程組和一元一次不等式組的應(yīng)用,解題的關(guān)鍵是讀懂題意,列出方程組和不
等式組.
26.【答案】解:(1)?.,%+)/=8,
???(x+y)2=64>
???x2+2xy+y2=64,
v%2+y2=40,
??.40+2xy=64,
???xy=12,
???孫的值為12;
(2)設(shè)4—%=a,x=b,
a+Z?=4-x+x=4,
???(4—x)x=5,
???ab=5,
(4-x)24-%2=a2+b2
=(a4-b^2—2ab
=42-2x5
=16-10
=6,
???(4-%)2+/的值為6;
(3)???四邊形ABCO是長(zhǎng)方形,
??-AB=CD=25,BC=15,
vBE=DF=%,
???CF=CD-DF=25-%,CE=BC-BE=15—x,
設(shè)CF=25—x=a,CE=15—%=b,
Aa—b=25—%—(15—%)=10,
???長(zhǎng)方形CEP尸的面積為200平方單位,
CF-CE=ab=200,
???圖中陰影部分的面積和=正方形CFGH的面積+正方形CEMN的面積
=CF2+CE2
=a24-h2
=(a-bp+2ab
=102+2x200
=100+400
=500,
???圖中陰影部分的面積和為500平方單位.
【解析】(1)利用例題的解題思路進(jìn)行計(jì)算,即可解答;
(2)設(shè)4一%=a,x=b,則a+b=4,ab=5,然后利用完全平方公式進(jìn)行計(jì)算,即可解答;
(3)根據(jù)題目的已知可得CF=25—x.CE=15—X,然后
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆山東省菏澤市高三10月期中考-政治試題(含答案)
- 中醫(yī)專長(zhǎng)培訓(xùn)定制班一學(xué)員協(xié)議書(shū)
- 2024年河北省中等職業(yè)對(duì)口升學(xué)中職英語(yǔ)真題(解析版)
- 2025年泰安貨運(yùn)從業(yè)資格證試題及答案
- 脊柱外科相關(guān)知識(shí)
- 2025年份第二季度職業(yè)柔道俱樂(lè)部寢技專家訓(xùn)練器械維護(hù)協(xié)議
- 工程售后服務(wù)協(xié)議書(shū)
- 股權(quán)轉(zhuǎn)讓附條件協(xié)議
- 二零二五版房屋合租協(xié)議
- 建設(shè)加油加氣加氫充電一體站項(xiàng)目可行性研究報(bào)告寫(xiě)作模板-拿地申報(bào)
- 2023學(xué)年杭州市余杭區(qū)七年級(jí)語(yǔ)文下學(xué)期期中考試卷附答案解析
- 9《小水滴的訴說(shuō)》(教學(xué)設(shè)計(jì))-2023-2024學(xué)年統(tǒng)編版道德與法治二年級(jí)下冊(cè)
- 2025年安徽合肥興泰金融控股集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 《道路交通安全法》課件完整版
- 加快形成農(nóng)業(yè)新質(zhì)生產(chǎn)力
- 施工現(xiàn)場(chǎng)應(yīng)急救援知識(shí)
- 飼料行業(yè)業(yè)務(wù)員聘用合同范本
- 全國(guó)園地、林地、草地分等定級(jí)數(shù)據(jù)庫(kù)規(guī)范1123
- 人工智能在教學(xué)動(dòng)畫(huà)設(shè)計(jì)中的應(yīng)用與創(chuàng)新路徑探究
- 護(hù)理中醫(yī)新技術(shù)新項(xiàng)目
- VDA-6.3-2016過(guò)程審核檢查表
評(píng)論
0/150
提交評(píng)論