版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題06一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(利用導(dǎo)函數(shù)研究不等式恒成立問題)(全題型壓軸題)目錄TOC\o"1-1"\h\u①已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào) 1②變量分離法 3③最值法 9④變更主元法 13⑤雙變量問題SKIPIF1<0型 14更多資料添加微信號:DEM2008淘寶搜索店鋪:優(yōu)尖升教育網(wǎng)址:①已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)1.(2023春·內(nèi)蒙古阿拉善盟·高二阿拉善盟第一中學(xué)校考期中)若函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】由題可知:SKIPIF1<0,在區(qū)間SKIPIF1<0恒成立,得SKIPIF1<0恒成立,即SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0恒成立,則函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<02.(2023春·內(nèi)蒙古興安盟·高二烏蘭浩特市第四中學(xué)??计谥校┤艉瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以在區(qū)間SKIPIF1<0上函數(shù)SKIPIF1<0,所以SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,SKIPIF1<0所以只需SKIPIF1<0即可.故答案為:SKIPIF1<0.3.(2023春·山東煙臺·高二統(tǒng)考期末)若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,對稱軸為直線SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,即實(shí)數(shù)a的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.4.(2023春·甘肅酒泉·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則a的取值范圍是.【答案】SKIPIF1<0【詳解】SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立.令SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0有最大值SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<05.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增,則實(shí)數(shù)SKIPIF1<0的取值范圍為【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以,SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增,則SKIPIF1<0在SKIPIF1<0內(nèi)恒成立,即SKIPIF1<0,解得SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增,則SKIPIF1<0,故SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.②變量分離法1.(2023春·吉林白城·高二??计谀┮阎瘮?shù)SKIPIF1<0在SKIPIF1<0處的切線與直線SKIPIF1<0:SKIPIF1<0垂直.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)若對任意實(shí)數(shù)SKIPIF1<0,SKIPIF1<0恒成立,求整數(shù)SKIPIF1<0的最大值.【答案】(1)單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0.(2)1【詳解】(1)由SKIPIF1<0,得SKIPIF1<0,又切線與直線SKIPIF1<0:SKIPIF1<0垂直,所以SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增.所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0.(2)對任意實(shí)數(shù)SKIPIF1<0,SKIPIF1<0恒成立,即對任意實(shí)數(shù)SKIPIF1<0恒成立.設(shè)SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增.所以SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,由題意知SKIPIF1<0且SKIPIF1<0所以SKIPIF1<0,即整數(shù)SKIPIF1<0的最大值為1.2.(2023·全國·高二專題練習(xí))已知SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性;(2)對一切實(shí)數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)答案見解析(2)SKIPIF1<0【詳解】(1)解:因?yàn)镾KIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,①當(dāng)SKIPIF1<0時,對任意的SKIPIF1<0,SKIPIF1<0,此時函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0;②當(dāng)SKIPIF1<0時,令SKIPIF1<0可得SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,此時函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0,增區(qū)間為SKIPIF1<0,綜上所述,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0,增區(qū)間為SKIPIF1<0.(2)解:因?yàn)镾KIPIF1<0,可得SKIPIF1<0,由對一切實(shí)數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立,即SKIPIF1<0恒成立,可得SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0恒成立,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以a的取值范圍為SKIPIF1<0.3.(2023春·山東德州·高二德州市第一中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù)),函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若不等式SKIPIF1<0在SKIPIF1<0上恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0;單調(diào)遞增區(qū)間為SKIPIF1<0(2)SKIPIF1<0【詳解】(1)函數(shù)SKIPIF1<0定義域?yàn)镾KIPIF1<0,又SKIPIF1<0,
令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0、SKIPIF1<0與SKIPIF1<0的關(guān)系如下所示:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0單調(diào)遞減單調(diào)遞減極小值單調(diào)遞增所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,SKIPIF1<0;單調(diào)遞增區(qū)間為SKIPIF1<0.(2)不等式SKIPIF1<0在SKIPIF1<0上恒成立,等價(jià)于不等式SKIPIF1<0在SKIPIF1<0上恒成立,故不等式SKIPIF1<0在SKIPIF1<0上恒成立,
令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為增函數(shù);當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為減函數(shù);所以SKIPIF1<0,所以SKIPIF1<0.4.(2023春·陜西咸陽·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)若SKIPIF1<0,求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若對于任意SKIPIF1<0,都有SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0處切線方程為SKIPIF1<0,SKIPIF1<0.(2)∵SKIPIF1<0,有SKIPIF1<0恒成立,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,∵當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0.∴SKIPIF1<0.5.(2023春·山東德州·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0是SKIPIF1<0的極值點(diǎn),求函數(shù)SKIPIF1<0的極值;(2)若SKIPIF1<0時,恒有SKIPIF1<0成立,求實(shí)數(shù)a的取值范圍.【答案】(1)極大值為SKIPIF1<0,極小值為SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,因?yàn)镾KIPIF1<0是SKIPIF1<0的極值點(diǎn),
所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.所以極大值SKIPIF1<0,極小值為SKIPIF1<0(2)若SKIPIF1<0時,恒有SKIPIF1<0恒成立,即SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,
令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0
所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0的最小值為SKIPIF1<0,所以SKIPIF1<0.
所以a的取值范圍為SKIPIF1<06.(2023春·福建寧德·高二校聯(lián)考期中)已知函數(shù)SKIPIF1<0,SKIPIF1<0;(1)求SKIPIF1<0函數(shù)的單調(diào)性;(2)設(shè)函數(shù)SKIPIF1<0,對于任意的SKIPIF1<0都有SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)答案見解析(2)SKIPIF1<0【詳解】(1)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,即SKIPIF1<0時,則SKIPIF1<0即SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,綜上所述:當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;(2)依題得SKIPIF1<0SKIPIF1<0因?yàn)閷τ谌我獾腟KIPIF1<0總有SKIPIF1<0成立,不妨設(shè)SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0設(shè)SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0單調(diào)遞增;SKIPIF1<0在SKIPIF1<0恒成立;∴SKIPIF1<0在SKIPIF1<0恒成立;設(shè)SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增;同理,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0的最大值為SKIPIF1<0,所以SKIPIF1<0.③最值法1.(2023春·江蘇鎮(zhèn)江·高二江蘇省揚(yáng)中高級中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0.(1)求在點(diǎn)SKIPIF1<0處函數(shù)SKIPIF1<0的切線方程;(2)若對任意SKIPIF1<0,都有SKIPIF1<0成立,求正數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,所以切線的方程為SKIPIF1<0;(2)設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,由對任意SKIPIF1<0,都有SKIPIF1<0成立,所以SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.2.(2023春·湖北武漢·高二校聯(lián)考期中)已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)求函數(shù)SKIPIF1<0的極值點(diǎn);(2)若SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)極大值點(diǎn)為SKIPIF1<0,無極小值點(diǎn);(2)SKIPIF1<0.【詳解】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,求導(dǎo)得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因此函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0,所以SKIPIF1<0的極大值點(diǎn)為SKIPIF1<0,無極小值點(diǎn).(2)設(shè)SKIPIF1<0,SKIPIF1<0,依題意,SKIPIF1<0,求導(dǎo)得SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,顯然函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0,因此當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0單調(diào)遞減,從而SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.3.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若對任意的SKIPIF1<0,SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】SKIPIF1<0【詳解】解法一,由SKIPIF1<0在SKIPIF1<0上恒成立,得SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立令SKIPIF1<0,SKIPIF1<0則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.解法二,由SKIPIF1<0在SKIPIF1<0上恒成立,得SKIPIF1<0在SKIPIF1<0上恒成立.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0滿足SKIPIF1<0即可SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.4.(2023春·陜西渭南·高二合陽縣合陽中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0,其中e為自然對數(shù)的底數(shù).(1)若SKIPIF1<0在SKIPIF1<0處取到極值,求a的值及函數(shù)SKIPIF1<0的最值;(2)若SKIPIF1<0有極值點(diǎn),求a的取值范圍.(3)若當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,求a的取值范圍.【答案】(1)SKIPIF1<0,SKIPIF1<0,無最大值(2)SKIPIF1<0(3)SKIPIF1<0.【詳解】(1)(1)由題知SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.經(jīng)檢驗(yàn)SKIPIF1<0滿足,∴SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,函數(shù)無最大值.(2)由題知SKIPIF1<0在SKIPIF1<0有變號零點(diǎn),即SKIPIF1<0在SKIPIF1<0有解.即SKIPIF1<0與SKIPIF1<0在SKIPIF1<0有交點(diǎn),∴SKIPIF1<0;(3)法一:由題意可知,SKIPIF1<0在SKIPIF1<0時恒成立,∵SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,∴SKIPIF1<0,不符合題意,綜上,SKIPIF1<0.法二:由SKIPIF1<0恒成立,SKIPIF1<0,當(dāng)SKIPIF1<0時,顯然SKIPIF1<0恒成立,∴SKIPIF1<0,當(dāng)SKIPIF1<0時,原式等價(jià)于SKIPIF1<0恒成立,令SKIPIF1<0,即SKIPIF1<0恒成立,易得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0成立,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0.5.(2023春·西藏日喀則·高二統(tǒng)考期末)設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0且SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.【答案】(1)答案見解析(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.(2)方法一:SKIPIF1<0在SKIPIF1<0恒成立,則當(dāng)SKIPIF1<0時,SKIPIF1<0,顯然成立,符合題意;當(dāng)SKIPIF1<0時,得SKIPIF1<0恒成立,即SKIPIF1<0記SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0為增函數(shù),則SKIPIF1<0.故SKIPIF1<0對任意SKIPIF1<0恒成立,則SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增,所以SKIPIF1<0∴SKIPIF1<0.方法二:SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0.記SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單增,在SKIPIF1<0單減,則SKIPIF1<0,得SKIPIF1<0,舍:當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單減,在SKIPIF1<0單增,在SKIPIF1<0單減,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單減,成立;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單減,在SKIPIF1<0單增,在SKIPIF1<0單減,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,顯然成立.綜上所述,SKIPIF1<0.④變更主元法1.(2023·全國·高三專題練習(xí))若不等式SKIPIF1<0,當(dāng)SKIPIF1<0時恒成立,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】不等式SKIPIF1<0可化為SKIPIF1<0,由已知可得SKIPIF1<0令SKIPIF1<0,可得SKIPIF1<0∴
SKIPIF1<0或SKIPIF1<0,故選D.2.(2022秋·江西撫州·高一金溪一中校考階段練習(xí))已知函數(shù)SKIPIF1<0,對任意的SKIPIF1<0,SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【詳解】SKIPIF1<0,定義域?yàn)镾KIPIF1<0,則SKIPIF1<0,可知函數(shù)SKIPIF1<0為奇函數(shù),又SKIPIF1<0均為增函數(shù),所以SKIPIF1<0為增函數(shù),由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,由題意可知,對任意的SKIPIF1<0,SKIPIF1<0恒成立,令SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.3.(2023·高一課時練習(xí))不等式SKIPIF1<0對滿足SKIPIF1<0的一切實(shí)數(shù)m的取值都成立,求x的取值范圍.【答案】SKIPIF1<0【詳解】不等式SKIPIF1<0化為:SKIPIF1<0對于任意的SKIPIF1<0恒成立,令SKIPIF1<0,要使SKIPIF1<0對于任意SKIPIF1<0恒成立,由于函數(shù)SKIPIF1<0是關(guān)于SKIPIF1<0的一條直線,則有SKIPIF1<0,解得SKIPIF1<0,故x的取值范圍為SKIPIF1<0.⑤雙變量問題SKIPIF1<0型1.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,若對SKIPIF1<0使得SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,根據(jù)復(fù)合函數(shù)的單調(diào)性可得SKIPIF1<0此時也單調(diào)遞增,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0.因?yàn)閷KIPIF1<0使得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<02.(2023春·海南??凇じ咭缓?谝恢行?计谥校㏒KIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<0的范圍是.【答案】SKIPIF1<0【詳解】SKIPIF1<0,都有SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立,所以函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值不小于函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0有最小值為SKIPIF1<0,又SKIPIF1<0的對稱軸為SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,由題意SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,由題意SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,可得SKIPIF1<0,由題意SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0;綜上可知,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.3.(2023·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0(SKIPIF1<0).設(shè)SKIPIF1<0,若對任意的SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【答案】SKIPIF1<0SKIPIF1<0【詳解】“對任意的SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0成立”,等價(jià)于“在SKIPIF1<0上,SKIPIF1<0的最大值大于或等于SKIPIF1<0的最大值”.由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0①當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0;②當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0的最大值為SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0;③當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.綜上所述:SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0SKIPIF1<04.(2023·黑龍江佳木斯·佳木斯一中校考模擬預(yù)測)已知SKIPIF1<0是定義在[-2,2]上的函數(shù),若滿足SKIPIF1<0且SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)設(shè)函數(shù)SKIPIF1<0,若對任意SKIPIF1<0,都有SKIPIF1<0恒成立,求m的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機(jī)械課程設(shè)計(jì)干啥的啊
- 智能核儀器基礎(chǔ)課程設(shè)計(jì)
- 稅收法制教育課程設(shè)計(jì)
- 編曲音樂創(chuàng)作課程設(shè)計(jì)
- 羽毛球上課課程設(shè)計(jì)
- 機(jī)械設(shè)計(jì)課程設(shè)計(jì)記錄
- 網(wǎng)站前段課課程設(shè)計(jì)
- 自動掃地機(jī)課程設(shè)計(jì)
- 藝術(shù)燈課程設(shè)計(jì)拱形門
- 家電維修行業(yè)維修技巧培訓(xùn)總結(jié)
- 2023-2024學(xué)年浙江省杭州市上城區(qū)教科版四年級上冊期末考試科學(xué)試卷
- 期末 (試題) -2024-2025學(xué)年人教PEP版英語五年級上冊
- 《三國志》導(dǎo)讀學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 期末 (試題) -2024-2025學(xué)年外研版(三起)(2024)英語三年級上冊
- 使用單位特種設(shè)備安全風(fēng)險(xiǎn)管控清單
- 新學(xué)位法專題講座課件
- GB-T-12137-2015-氣瓶氣密性試驗(yàn)方法
- 學(xué)生學(xué)習(xí)挑戰(zhàn)書
- 煙葉種植及加工項(xiàng)目可行性研究報(bào)告寫作范文
- 員工知識產(chǎn)權(quán)歸屬協(xié)議
- 八卦象數(shù)療法常見配方最新版
評論
0/150
提交評論