版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆福建省泉州市鯉城區(qū)泉州市第七中學(xué)中考聯(lián)考數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖形中,既是中心對稱,又是軸對稱的是()A. B. C. D.2.若數(shù)a使關(guān)于x的不等式組有解且所有解都是2x+6>0的解,且使關(guān)于y的分式方程+3=有整數(shù)解,則滿足條件的所有整數(shù)a的個數(shù)是()A.5 B.4 C.3 D.23.下列實數(shù)中,最小的數(shù)是()A. B. C.0 D.4.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.5.計算4×(–9)的結(jié)果等于A.32 B.–32 C.36 D.–366.每個人都應(yīng)懷有對水的敬畏之心,從點滴做起,節(jié)水、愛水,保護我們生活的美好世界.某地近年來持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關(guān)于用水量的統(tǒng)計量不會發(fā)生改變的是()用水量x(噸)34567頻數(shù)1254﹣xxA.平均數(shù)、中位數(shù)B.眾數(shù)、中位數(shù)C.平均數(shù)、方差D.眾數(shù)、方差7.如圖是由三個相同小正方體組成的幾何體的主視圖,那么這個幾何體可以是()A.B.C.D.8.下列式子成立的有()個①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個不等的實數(shù)根A.1 B.2 C.3 D.49.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個10.施工隊要鋪設(shè)1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務(wù).設(shè)原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=211.若順次連接四邊形各邊中點所得的四邊形是菱形,則四邊形一定是()A.矩形 B.菱形C.對角線互相垂直的四邊形 D.對角線相等的四邊形12.在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空題:(本大題共6個小題,每小題4分,共24分.)13.為了了解貫徹執(zhí)行國家提倡的“陽光體育運動”的實施情況,將某班50名同學(xué)一周的體育鍛煉情況繪制成了如圖所示的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的數(shù)據(jù),該班50名同學(xué)一周參加體育鍛煉時間的中位數(shù)與眾數(shù)之和為_____.14.如圖,直線經(jīng)過、兩點,則不等式的解集為_______.15.若方程x2﹣2x﹣1=0的兩根分別為x1,x2,則x1+x2﹣x1x2的值為_____.16.為了節(jié)約用水,某市改進居民用水設(shè)施,在2017年幫助居民累計節(jié)約用水305000噸,將數(shù)字305000用科學(xué)記數(shù)法表示為________.17.如圖,四邊形ABCD中,點P是對角線BD的中點,點E,F(xiàn)分別是AB,CD的中點,AD=BC,∠PEF=35°,則∠PFE的度數(shù)是_____.18.菱形的兩條對角線長分別是方程的兩實根,則菱形的面積為______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)中,點O是坐標(biāo)原點,一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(1,m)、B(n,1)兩點.(1)求直線AB的解析式;(2)根據(jù)圖象寫出當(dāng)y1>y2時,x的取值范圍;(3)若點P在y軸上,求PA+PB的最小值.20.(6分)如圖,已知反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點A(1,4),點B(﹣4,n).求n和b的值;求△OAB的面積;直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.21.(6分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點D,過點D的直線交BC于點E,交AB的延長線于點P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點M是弧AB的中點,連結(jié)DM,交AB于點N.若tanA=12,求DN22.(8分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB點F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長.23.(8分)如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.求證:△ADE≌△CBF;若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.24.(10分)受益于國家支持新能源汽車發(fā)展和“一帶一路”發(fā)展戰(zhàn)略等多重利好因素,我市某汽車零部件生產(chǎn)企業(yè)的利潤逐年提高,據(jù)統(tǒng)計,2014年利潤為2億元,2016年利潤為2.88億元.求該企業(yè)從2014年到2016年利潤的年平均增長率;若2017年保持前兩年利潤的年平均增長率不變,該企業(yè)2017年的利潤能否超過3.4億元?25.(10分)如圖,△ABC三個定點坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).請畫出△ABC關(guān)于y軸對稱的△A1B1C1;以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內(nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.26.(12分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.27.(12分)如圖,點A,B,C,D在同一條直線上,點E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.(1)求證:四邊形BFCE是平行四邊形;(2)若AD=10,DC=3,∠EBD=60°,則BE=時,四邊形BFCE是菱形.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)中心對稱圖形,軸對稱圖形的定義進行判斷.【詳解】A、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形,軸對稱圖形的判斷.關(guān)鍵是根據(jù)圖形自身的對稱性進行判斷.2、D【解析】
由不等式組有解且滿足已知不等式,以及分式方程有整數(shù)解,確定出滿足題意整數(shù)a的值即可.【詳解】不等式組整理得:,由不等式組有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整數(shù)解,得到a=0,2,共2個,故選:D.【點睛】本題考查了分式方程的解,解一元一次不等式,以及解一元一次不等式組,熟練掌握運算法則是解本題的關(guān)鍵.3、B【解析】
根據(jù)正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小,進行比較.【詳解】∵<-2<0<,∴最小的數(shù)是-π,故選B.【點睛】此題主要考查了比較實數(shù)的大小,要熟練掌握任意兩個實數(shù)比較大小的方法.(1)正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而?。?)利用數(shù)軸也可以比較任意兩個實數(shù)的大小,即在數(shù)軸上表示的兩個實數(shù),右邊的總比左邊的大,在原點左側(cè),絕對值大的反而?。?、B【解析】
根據(jù)菱形的性質(zhì)得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.【詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點G,設(shè)BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.5、D【解析】
根據(jù)有理數(shù)的乘法法則進行計算即可.【詳解】故選:D.【點睛】考查有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘.6、B【解析】
由頻數(shù)分布表可知后兩組的頻數(shù)和為4,即可得知頻數(shù)之和,結(jié)合前兩組的頻數(shù)知第6、7個數(shù)據(jù)的平均數(shù),可得答案.【詳解】∵6噸和7噸的頻數(shù)之和為4-x+x=4,∴頻數(shù)之和為1+2+5+4=12,則這組數(shù)據(jù)的中位數(shù)為第6、7個數(shù)據(jù)的平均數(shù),即5+52∴對于不同的正整數(shù)x,中位數(shù)不會發(fā)生改變,∵后兩組頻數(shù)和等于4,小于5,∴對于不同的正整數(shù)x,眾數(shù)不會發(fā)生改變,眾數(shù)依然是5噸.故選B.【點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)的定義和計算方法是解題的關(guān)鍵.7、A【解析】試題分析:主視圖是從正面看到的圖形,只有選項A符合要求,故選A.考點:簡單幾何體的三視圖.8、B【解析】
根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式進行判斷.【詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯誤;③(-)=﹣2,故錯誤;④因為△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個不等的實數(shù)根,故正確.故選B.【點睛】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式,屬于比較基礎(chǔ)的題目,熟記計算法則即可解答.9、B【解析】解:第一個圖是軸對稱圖形,又是中心對稱圖形;第二個圖是軸對稱圖形,不是中心對稱圖形;第三個圖是軸對稱圖形,又是中心對稱圖形;第四個圖是軸對稱圖形,不是中心對稱圖形;既是軸對稱圖形,又是中心對稱圖形的有2個.故選B.10、A【解析】分析:設(shè)原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù):原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設(shè)原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù)題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關(guān)鍵是讀懂題意,找出合適的等量關(guān)系,列出方程.11、C【解析】【分析】如圖,根據(jù)三角形的中位線定理得到EH∥FG,EH=FG,EF=BD,則可得四邊形EFGH是平行四邊形,若平行四邊形EFGH是菱形,則可有EF=EH,由此即可得到答案.【點睛】如圖,∵E,F(xiàn),G,H分別是邊AD,DC,CB,AB的中點,∴EH=AC,EH∥AC,F(xiàn)G=AC,F(xiàn)G∥AC,EF=BD,∴EH∥FG,EH=FG,∴四邊形EFGH是平行四邊形,假設(shè)AC=BD,∵EH=AC,EF=BD,則EF=EH,∴平行四邊形EFGH是菱形,即只有具備AC=BD即可推出四邊形是菱形,故選D.【點睛】本題考查了中點四邊形,涉及到菱形的判定,三角形的中位線定理,平行四邊形的判定等知識,熟練掌握和靈活運用相關(guān)性質(zhì)進行推理是解此題的關(guān)鍵.12、A【解析】【分析】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于k和b.當(dāng)k>0,b>O時,圖象過一、二、三象限,據(jù)此作答即可.【詳解】∵一次函數(shù)y=3x+1的k=3>0,b=1>0,∴圖象過第一、二、三象限,故選A.【點睛】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于x的系數(shù)和常數(shù)項.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、17【解析】∵8是出現(xiàn)次數(shù)最多的,∴眾數(shù)是8,∵這組數(shù)據(jù)從小到大的順序排列,處于中間位置的兩個數(shù)都是9,∴中位數(shù)是9,所以中位數(shù)與眾數(shù)之和為8+9=17.故答案為17小時.14、-1<X<2【解析】經(jīng)過點A,∴不等式x>kx+b>-2的解集為.15、1【解析】根據(jù)題意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案為1.16、【解析】試題解析:305000用科學(xué)記數(shù)法表示為:故答案為17、35°【解析】∵四邊形ABCD中,點P是對角線BD的中點,點E,F(xiàn)分別是AB,CD的中點,∴PE是△ABD的中位線,PF是△BDC的中位線,∴PE=AD,PF=BC,又∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=35°.故答案為35°.18、2【解析】
解:x2﹣14x+41=0,則有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面積為:(6×1)÷2=2.菱形的面積為:2.故答案為2.點睛:本題考查菱形的性質(zhì).菱形的對角線互相垂直,以及對角線互相垂直的四邊形的面積的特點和根與系數(shù)的關(guān)系.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x+4;(2)1<x<1;(1)2.【解析】
(1)依據(jù)反比例函數(shù)y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點,即可得到A(1,1)、B(1,1),代入一次函數(shù)y1=kx+b,可得直線AB的解析式;(2)當(dāng)1<x<1時,正比例函數(shù)圖象在反比例函數(shù)圖象的上方,即可得到當(dāng)y1>y2時,x的取值范圍是1<x<1;(1)作點A關(guān)于y軸的對稱點C,連接BC交y軸于點P,則PA+PB的最小值等于BC的長,利用勾股定理即可得到BC的長.【詳解】(1)A(1,m)、B(n,1)兩點坐標(biāo)分別代入反比例函數(shù)y2=(x>0),可得m=1,n=1,∴A(1,1)、B(1,1),把A(1,1)、B(1,1)代入一次函數(shù)y1=kx+b,可得,解得,∴直線AB的解析式為y=-x+4;(2)觀察函數(shù)圖象,發(fā)現(xiàn):當(dāng)1<x<1時,正比例函數(shù)圖象在反比例函數(shù)圖象的上方,∴當(dāng)y1>y2時,x的取值范圍是1<x<1.(1)如圖,作點A關(guān)于y軸的對稱點C,連接BC交y軸于點P,則PA+PB的最小值等于BC的長,過C作y軸的平行線,過B作x軸的平行線,交于點D,則Rt△BCD中,BC=,∴PA+PB的最小值為2.【點睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,根據(jù)函數(shù)圖象的上下位置關(guān)系結(jié)合交點的橫坐標(biāo),得出不等式的取值范圍是解答此題的關(guān)鍵.20、(1)-1;(2);(3)x>1或﹣4<x<0.【解析】
(1)把A點坐標(biāo)分別代入反比例函數(shù)與一次函數(shù)解析式,求出k和b的值,把B點坐標(biāo)代入反比例函數(shù)解析式求出n的值即可;(2)設(shè)直線y=x+3與y軸的交點為C,由S△AOB=S△AOC+S△BOC,根據(jù)A、B兩點坐標(biāo)及C點坐標(biāo),利用三角形面積公式即可得答案;(3)利用函數(shù)圖像,根據(jù)A、B兩點坐標(biāo)即可得答案.【詳解】(1)把A點(1,4)分別代入反比例函數(shù)y=,一次函數(shù)y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵點B(﹣4,n)也在反比例函數(shù)y=的圖象上,∴n==﹣1;(2)如圖,設(shè)直線y=x+3與y軸的交點為C,∵當(dāng)x=0時,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根據(jù)圖象可知:當(dāng)x>1或﹣4<x<0時,一次函數(shù)值大于反比例函數(shù)值.【點睛】本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=中k的幾何意義,這里體現(xiàn)了數(shù)形結(jié)合的思想.21、(1)見解析;(2)23π;(3)【解析】
(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進而可得到∠DOB=60o,然后根據(jù)弧長公式計算即可;(3)連結(jié)OM,過D作DF⊥AB于點F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.【詳解】(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設(shè)∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長l=60·π·2(3)連結(jié)OM,過D作DF⊥AB于點F,∵點M是的中點,∴OM⊥AB,設(shè)BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【點睛】本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質(zhì),含30°角的直角三角形的性質(zhì),弧長的計算,弧弦圓心角的關(guān)系,相似三角形的判定與性質(zhì).熟練掌握切線的判定方法是解(1)的關(guān)鍵,求出∠A=30o是解(2)的關(guān)鍵,證明△OMN∽△FDN是解(3)的關(guān)鍵.22、(1)(2)證明見解析;(3)1.【解析】
(1)由PD切⊙O于點C,AD與過點C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;
(2)由條件可得∠CAO=∠PCB,結(jié)合條件可得∠PCF=∠PFC,即可證得PC=PF;
(3)易證△PAC∽△PCB,由相似三角形的性質(zhì)可得到,又因為tan∠ABC=,所以可得=,進而可得到=,設(shè)PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進而可建立關(guān)于k的方程,解方程求出k的值即可求出PC的長.【詳解】(1)證明:∵PD切⊙O于點C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設(shè)PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點睛】此題考查了和圓有關(guān)的綜合性題目,用到的知識點有:切線的性質(zhì)、相似三角形的判定與性質(zhì)、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質(zhì).23、(1)證明見解析;(2)若∠ADB是直角,則四邊形BEDF是菱形,理由見解析.【解析】
(1)由四邊形ABCD是平行四邊形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分別為邊AB、CD的中點,可證得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先證明BE與DF平行且相等,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形證明四邊形BEDF是平行四邊形,再連接EF,可以證明四邊形AEFD是平行四邊形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根據(jù)菱形的判定可以得到四邊形是菱形.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分別為邊AB、CD的中點,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,則四邊形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四邊形BEDF是平行四邊形,連接EF,在?ABCD中,E、F分別為邊AB、CD的中點,∴DF∥AE,DF=AE,∴四邊形AEFD是平行四邊形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四邊形BFDE是平行四邊形,∴四邊形BFDE是菱形.【點睛】1、平行四邊形的性質(zhì);2、全等三角形的判定與性質(zhì);3、菱形的判定24、(1)20%;(2)能.【解析】
(1)設(shè)年平均增長率為x,則2015年利潤為2(1+x)億元,則2016年的年利潤為2(1+x)(1+x),根據(jù)2016年利潤為2.88億元列方程即可.(2)2017年的利潤在2016年的基礎(chǔ)上再增加(1+x),據(jù)此計算即可.【詳解】(1)設(shè)該企業(yè)從2014年到2016年利潤的年平均增長率為x.根據(jù)題意,得2(1+x)2=2.88,解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新形勢下Mini LED行業(yè)快速做大市場規(guī)模戰(zhàn)略制定與實施研究報告
- 2025-2030年中國超聲熱量表行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實施研究報告
- 新形勢下北斗衛(wèi)星應(yīng)用行業(yè)可持續(xù)發(fā)展戰(zhàn)略制定與實施研究報告
- 2025-2030年中國廚房料理小家電行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 市政道路竣工驗收質(zhì)量評估報告-定稿
- 自動變速器維修試題及答案2
- 微懸浮法糊樹脂新建項目可行性研究報告建議書申請格式范文
- 中國改善睡眠保健品行業(yè)全景評估及投資規(guī)劃建議報告
- 2024-2030年航空運輸行業(yè)投資機會及風(fēng)險投資運作模式研究報告
- 四年級數(shù)學(xué)(四則混合運算)計算題專項練習(xí)與答案匯編
- 高速服務(wù)區(qū)經(jīng)營分析報告
- 浙江省湖州市2022-2023學(xué)年四年級上學(xué)期數(shù)學(xué)期末試卷(含答案)
- 現(xiàn)場工藝紀(jì)律檢查表
- 建井施工方案
- YMO青少年數(shù)學(xué)思維28屆五年級全國總決賽試卷
- 烘干廠股東合作協(xié)議書
- 個人業(yè)績相關(guān)信息采集表
- 過敏性紫癜課件PPT
- 大學(xué)生暑期社會實踐證明模板(20篇)
- 自來水維修員年度工作總結(jié)
- ASTMB117-2023年鹽霧試驗標(biāo)準(zhǔn)中文
評論
0/150
提交評論