版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
FromDeepLearningtoRationalMachines–FinalManuscriptVersion–CameronBuckner
cjbuckner@
PAGE
10
ThisisadraftofachapterthathasbeenacceptedforpublicationbyOxfordUniversityPressintheforthcomingbook:
FromDeepLearningtoRationalMachines
WhattheHistoryofPhilosophyCanTeachUsabouttheFutureofArtificialIntelligence
byCameronJ.Bucknerdueforpublicationin2023
Chapter1
ModerateEmpiricismandMachineLearning
Insteadoftryingtoproduceaprogrammetosimulatetheadultmind,whynotrathertrytoproduceonewhichsimulatesthechild's?Ifthiswerethensubjectedtoanappropriatecourseofeducationonewouldobtaintheadultbrain.Presumablythechild-brainissomethinglikeanote-bookasonebuysitfromthestationers.Ratherlittlemechanismandlotsofblanksheets.…Ourhopeisthatthereissolittlemechanisminthechild-brainthatsomethinglikeitcanbeeasilyprogrammed.
-AlanM.Turing(1950)
1.1Playingwithfire?Naturevs.nurtureforcomputerscience
Inhumaninquiry,theintroductionofagranddichotomy—goodvs.evil,mortalvs.divine,emotionvs.reason—cantakeonthevitalimportance,aswellastheattendantdanger,ofthediscoveryoffire.Whilesuchdichotomiessupportqualitativeshiftsinthereachofourtheorizing,theyareoftenquicklytakenforgranted,perhapstooquickly,asanelementalforcegoverningtheworldandourplacewithinit.Thedistinctionbetweennatureandnurturestandsasaprimeexample.Thisoppositionhasanimatedthehumanintellectforthousandsofyears,motivatingthesystematicexplorationofcompetingstylesoftheoryinnearlyeveryacademicdiscipline.Wetendtohavestrongintuitionsastowhetherhumanknowledgeisproducedbyturninginwardtounpackourinnatementalendowmentorbyturningoutwardtointerpretthecipherofexperience,andtheenergyprovidedbytheseintuitionshaspoweredavarietyofscientificandtechnologicalinnovations.AswithotherPrometheanbargains,however,suchadvancesareboughtattheexpenseofnewandpersistentdangers.Vigorouslyrubbingtheseopposingintuitionsagainstoneanothercangeneratefrictionwithoutillumination,causingtheoriststopursuearesearchprogramlongafteritsempiricalprospectshavegrowncold,ortolosesightofthedetailsofoneanother’sviewsinahazeofmisunderstandingand
exaggeration.And,ofcourse,firesthatgrowtoolargecanburndangerouslyoutofcontrol.Lestwegetsinged,thesedistinctionsmustbecontinuouslywatchedandcarefullytended—particularlywhenapowerfulnewsourceoffuelistossedintotheflames.
Wearenowinthemiddleofjustsuchaconflagration,andthenewfuelsourcegoesbythenameof“deeplearning.”Indeed,fundingandresearchfordeeplearningiscurrentlyblazing;asof2023,everymajortechcompany’smarqueeR&Dgroupisfocusedondeeplearning,withfiercebiddingwarsfortoptalent.
MostissuesofprestigepublicationslikeScienceandNaturefeatureoneofthesegroups’latestexperiments.Thesepublicationsreportaseriesoftransformativebreakthroughsinartificialintelligence,includingsystemsthatcan:recognizecomplexobjectsinnaturalphotographsaswellorbetterthanhumans;defeathumangrandmastersinstrategygamessuchaschess,Go,shoji,orStarcraftII;createnovelpicturesandbodiesoftextthataresometimesindistinguishablefromthoseproducedbyhumans;siftthroughthefaintestradioechoestodiscovernewexoplanetsorbitingstarsthousandsoflightyearsaway;crunchmassiveamountsofdatageneratedbyparticleacceleratorstotrytofindcounterexamplestotheStandardModelinphysics;andpredicthowproteinswillfoldmoreaccuratelythanhumanmicrobiologistswhohavedevotedtheirlivestothetask.1
Inshort,deeplearning’scurrentfortunesarewhite-hot;but,aswithallsystemsofknowledgeacquisition,ourexpectationsofitscontinuedprosperityareshapedbyourviewsonthenature-nurturedichotomy.Deeplearning’scurrentstatusandfuturedevelopmentarethereforemeaningfullyinformedbyphilosophicalpositions,particularlythoseonofferinthehistoricallygroundedbutongoingdebatebetweenempiricistsandnativists.Atfirstblush,thisdebateconcernstheoriginsofhumanknowledge:empiricistsholdthatknowledgeisderivedfromsensoryexperience,whereasnativiststendtoberationalistswhoinsteadprizeourcapacitytoreason—usuallydrivenbyaninnatetheoryoftheworld’sbasicstructureand/orof
1Fordetails,see(Baldi,Sadowski,andWhiteson2014;Brownetal.2020;Chowdheryetal.2022;Jumperetal.2021;Krizhevsky,Sutskever,andHinton2012;Rameshetal.2022;ShallueandVanderburg2018;Silveretal.2017;Vinyalsetal.2019).
rationalminds—asthesourceofgenuineknowledge.2Whentreatedasanapproachtoartificialintelligence,deeplearningisalreadyidentifiedasanurture-favoring,empiriciststyleoftheory,thoughIarguethatitsachievementsvindicateamoderatelyempiricistapproachtocognitionthatismorenuancedandresourcefulthantheempiricismtypicallysurveyedinevaluationsofdeeplearning’spotential.Thismoderatelyempiricistapproach,legitimatedbyaninvestigationofthehistoricaloriginsofthephilosophicaldebateintheworkofinfluentialempiricistphilosophersandtheapplicationoftheirviewstotherelationshipbetweenmachinelearningmodelsandthemind,suggeststhattoday’sachievementsindeeplearningsubstantiallyincreasetheplausibilitythatrationalcognitioncanbeachieved—andisachieved,inhumans,manyanimals,and,ifwehopetosucceed,artificialagents—withouttheaidoftheinnatetheoriesorconceptsusuallyrecommendedbytheopposed,nature-favoring,rationalistfactionoftheorists.
Whileempiricistandnativiststheoristsfightoverthepast,present,andfutureofdeeplearningsystemsdevelopment,thecurrententhusiasmforempiricisminengineeringandbusinessthreatenstoburnoutofcontrol—thoughthisparticularstrainofempiricismsometimesdrawsoxygenfromasimplisticunderstandingoftherelationshipbetweenthesuccessesofdeeplearningsystemsandthewaythathumansandanimalsactuallysolveproblems.Researchismovingsorapidlythataninfluentialdeeplearningpublicationcanreceive20,000citationsbythetimeitisonlytwoorthreeyearsold—manyofthosewhileitisavailableonlyonapre-printarchive,meaningthatithasnotyetgonethroughthenormalprocessofpeer-reviewbyotheracademicswhocouldskepticallyassessitsclaims.Meanwhile,leadingnativistsaregoinghoarsecallingforthefirebrigade.Thesenativistsworrythatdeeplearningisbeingappliedtoawiderangeofproblemswithoutafirmunderstandingofhoworwhyitworks,andthatthesolutionsdiscoveredbydeeplearningagentsarebrittleanddonotgeneralizetonewsituationsaswellasthestrategiesdeployedbyhumansandanimals.Dependinguponwhetheryouaskempiricistsornativists,deeplearningsystemscaneitheralreadyprocessinputdatasoeffectivelythattheyareatleastslightlyconsciousandonthevergeofachievingescapevelocityintoworld-spanningsuperintelligence,ortheycandolittlemorethanbludgeonproblemswith
2Toforestallconfusion,thephilosophicalrationalismattributabletothinkerslikeDescartes,Leibniz,andSpinozaisnottobeconflatedwiththenew“rationalism”associatedwithblogslikeLessWrongorSlateStarCodex,forwhichthetraditionalphilosophicaldistinctionisorthogonal.
massiveamountsofstatisticsandlinearalgebrathatcanimitatetheoutwardappearanceofhumanintelligencebut,becausetheylacktheunderlyingstructureprovidedbythehumanmind’sinnatestartupsoftware,willnevercaptureeventhemostbasicaspectsofhumanmentality.
Althoughdeeplearningcanbeunderstoodinpurelytechnicaltermsoutsidethenature-nurturedichotomy,andhenceoutsidetheempiricist-nativistdebate,itisdifficulttoassessitsprospectsasaroutetoartificialintelligenceexceptthroughitslight,withallitsattendantprospectsandperils.Thisdebateofcoursehasancienthistoricalorigins,yetinfluentialscientistsfrequentlyinvokeitstermstoexplainandmotivatetheircurrentviews.Forinstance,inafrontNaturearticle,ateamfromGoogle’sDeepMinddivisionpitchedtheirAlphaZerosystem—whichcaneasilydefeathumangrandmastersattheChineseboardgameofGo,agamethatisinsomewaysmorecomplexthanchess—asoperatingwitha“tabularasa”orblankslatealgorithm(Silveretal.2017).ThisempiricistmetaphorenteredtheWesternlexiconviaAristotle’sDeAnima(III,429b-430a),whichcomparesthehumanmindtothewax-coveredtabletswhichtheGreekacademiesusedfornotes;thesetabletswere“blanked”byheatingthemuntilthewaxmelted,smoothingthesurfaceforre-use.Themetaphorfortheinfant’smindbecamecanonicalthroughitsrepetitionbyarangeofempiricistphilosophers,fromAristotle’sinheritorsIbnSina(Avicenna)andSt.ThomasAquinas(thelatterofwhichsummarizeditwiththePeripateticMaxim,whichstatesthat“nihilestinintellectuquodnonsitpriusinsensu”or“nothinginthemindwhichisnotfirstinthesenses”—DeVeritate2.3.19),totheEarlyModernempiricistsJohnLockeandDavidHume,withwhomtheviewistodaymostcommonlyassociated.3
Deeplearningenthusiastsarenottheonlyonestosummonthehistoryofphilosophyinthiscontext.
Contemporarynativistshavealsobeeneagertoalignthecurrentdebatewithhistoricalpositions.InhiscritiqueoftheAlphaZeropaper,forexample,thenativistpsychologistGaryMarcusassociatesSilveretal.’sblankslatelanguagewiththeviewsofLocke,whowrotethat“allideascomefromsensationorreflection”(E
3Otherphilosophicaltraditionsalsohaveviewswhichappearrecognizablyempiricistbythestandardsofthisdebate;forexample,someoftheYogācāraBuddhistphilosopherslikeDharmakīrtiareidentifiedasempiricistbyinterpreters(Powers1994;Tillemans2021)andsomehaveevenwonderedwhetherWesternempiricistslikeHumewereinfluencedbyexposuretoBuddhistphilosophy(Gopnik2009).Othercommentators,however,viewsuchtrans-culturallinkageswithskepticism(Conze1963;Montalvo1999).Atanyrate,averyinterestingbooksimilartothisonecouldbewrittenbydrawinguponthefacultypsychologyinthesealternativetraditionstointerpretandguidethedevelopmentofdeeplearning.IamgratefultoAmitChaturvadifordrawingmyattentiontothesepotentialparallels.
II.ii.2).MarcuscouldjustaswellhavelinkedittoHume,whodeclaredthat“alloursimpleideasintheirfirstappearancearederiv’dfromsimple[sensory]impressions”(commonlyreferredtoashis“CopyPrinciple”–T/4).Hume,however,ismorefrequentlythetargetofJudeaPearl.Oneofthemostinfluentiallivingcomputerscientistsandafrequentdeeplearningcritic,Pearlhasrecentlyworriedthatdeeplearningtheoriststakeasself-evidenta“radicalempiricism”accordingtowhichallknowledge“canbeanalyzedbyexaminingpatternsofconditionalprobabilitiesinthedata”(2021).4
Thehistoryofphilosophycertainlyspeakstodeeplearning’sachievements,butnotintermsassimpleastheseinterlocutorssuggest.Wheretheyseeastarkdichotomy,LockeandHumedeveloptheirkeystonemantrasintoanelaborateempiricisttheoryofhumancognitionthatismorenuancedandflexible.Infact,mostresearchindeeplearningismotivatedbyasetofassumptionsmoreconsistentwiththesephilosophers’lessradicaltakeonempiricism,andoneofthemaintasksofthisbookistoarticulateexactlywhichversionofempiricismismostsupportedbyrecentdevelopments.Identifyingandclarifyingthemoderatelyempiricistapproachtoooftenlostintheflashpointdebatescanunlockuntappedexplanatorypower,bothforunderstandingdeeplearning’scurrentmethodsandforchartingtheoptimalcoursetofuturebreakthroughs.Thechallengeisthataswithpoliticalslogans,eventheseeminglysimplestatementsoftheempiricistcreedcanmeandifferentthingstodifferentconstituencies.Byputtingintheinterpretiveworktounderstandthemcharitably,wecanavoidtalking-pastanddirectevaluativeeffortstowardsfruitfulfutureresearch.
Unsurprisingly,eventhemostprominentnativistsandempiriciststodayinterprettheaforementionedsloganstoimplyquitedifferentthings.Nativist-leaningtheoriststendtoassociateblankslateswiththelastgreatempiricistinferno,thebehavioristmovementinAmericanpsychology,whichreachedtheheightofitspowerandthenquicklydwindledtoembersinthemiddleofthelastcentury.Suchtheoriststypicallyconnecttheempiricistblankslatewithradicallyinsufficientexplanationsforhumanlearning.StevenPinkerarticulatesthisperspectiveclearlyinhisbookTheBlankSlate.AccordingtoPinker,today’sempiricistshaverevivedthe
4Ingeneral,Pearlislessconcernedherewiththedebateovernativismandanti-nativisminpsychologythantheseothercritics,andmoreengagedinthebattlebetweenskepticalHumeanandrealistapproachestocausationinmetaphysicsandphilosophyofscience.
doomedmissionofthebehaviorists,who“throughmostofthe20thcentury…triedtoexplainallofhumanbehaviorbyappealingtoacoupleofsimplemechanismsofassociationandconditioning”(Pinker2003).5Lakeetal.alsocalledoutthe“strongempiricismofmodernconnectionistmodels”whichtheyidentifywiththe“oversimplifiedbehaviorism”thatwas“repudiated”bythecognitiverevolutioninthelatterhalfofthe20thcentury(2017,p.4).ThisreportedabrogationoccurredwhenNoamChomskysmotheredbehaviorismunderawaveofhis“Cartesianlinguistics,”whichexplicitlyinvokedtherationalistnativismofFrenchphilosopherRenéDescartes(Chomsky1966)toinspirehisargumentsforanintricatesetofinnategrammaticalrulestoexplainhumanlinguisticability.6Marcusevenformalizesthisbehavioristinterpretationofempiricismbydefiningcognitionasafunctionrangingoverfourvariables:
cognition=f(a,r,k,e),
wherea=algorithms,r=representationalformats,k=innateknowledge,ande=experience.Marcus’construaloftheempiricistapproach—which,asmentionedabove,MarcusattributestoLocke—“wouldsetkandrtozero,setatosomeextremelyminimalvalue,(e.g.,anoperationforadjustingweightsrelativetoreinforcementsignals),andleavetheresttoexperience”(Marcus2018).7
Onthispoint,nativistspracticesomethingoftheradicalsimplificationtheycritique,byassumingthatforthemindtobe“blank”atbirth,itmustbeginwithvirtuallynoinnatestructureatall.ThemorecharitablenativistphilosophersLaurenceandMargolis(2015)haverecentlyworriedthatsummarizingcurrentdebatesincognitivescienceasthequestionofwhetherthemindhasanyinnatestructurewhatsoeverhastheunfortunateconsequencethat“therearen’treallyanyempiricists.”8Inreality,acompletelystructurelessmind,likeaninertmineralslab,wouldnotlearnanythingbybeingsubjectedtoanyamountofstimulus.Thisseems
5SeealsoChilders,Hvorecky,andMeyer(2021),whoalsolinkdeeplearningtobehaviorism;Idefendaverydifferentapproachtolinkingdeeplearningtothehistoryoftheempiricist-rationalistdebate.
6Whilealsoendorsingarichpackageof“startupsoftware”forthemind(whichintheirfavoredBayesianmodelsistypicallyprogrammedmanuallyinsymbolicform,includingmanuallyspecifiedrepresentationalprimitivesandpriorprobabilityestimations)whichtheythinkshouldincludecomponentsofCoreKnowledge,Lakeetal.(2017)areofficiallyagnosticastowhetherthatsoftwareisinnateorlearnedveryearlyinchildhood.
7Whatdoes“innate”meanhere?Anentiresubareaofphilosophyofsciencehasburgeonedaroundthequestionofhowbesttodefineinnateness(Ariew1996;GriffithsandMachery2008;Khalidi2001,2016,2016;MallonandWeinberg2006;MameliandBateson2006;NorthcottandPiccinini2018;Samuels2004,2007).Forpresentpurposes,wecanproceedwithaminimalistnotionthatimpliesatleast“notlearned”(Ritchie2021).
8Theempiricist-leaningdevelopmentalpsychologistLindaSmithhasalsocriticizedthisframinginherarticle,“Avoidingassociationswhenit’sbehaviorismyoureallyhate”(Smith2000).
tobesomethingthatnearlyallinfluentialempiricistshaveacknowledged.Backinthetwilightofbehaviorism’sreign,theempiricistphilosopherWillardvanOrmanQuineobservedthateventhemostradicalbehaviorists,likeJohnWatsonandB.F.Skinner,were“knowinglyandcheerfullyupto[their]neckininnatemechanisms”(quotedinLaurenceandMargolis2015;Quine1969:95–96):theymustassumearicharrayofbiologicalneeds,sensorymechanisms,attentionalbiases,andreflexivebehaviorswhichcouldbeassociatedwithoneanotherbeforeeventhesimplestformsofassociativelearningcouldbegin.Theitemsonthislistsuitorganismstotheirevolutionarynicheswithoutappealtoinnateknowledgestructures,illustratingwhyamoredetailedexaminationofempiricist-brandedtheorizinginbothphilosophyandcomputerscienceisrequired.Amoresystematicexaminationofthehistoryofempiricisttheorizingquicklyrevealsappealstoinnatefactorsmoreexpansivethanthislist.Thus,whileMarcus’formalizedmodelofempiricismissharperthantheempiricistmantrasinitsimplications,itisalsolessuseful,particularlyifweaimforacharitableevaluationofdeeplearning’sprospects.
Theprecedingillustrationoftheempiricist-nativistdichotomy,asitinformsthedevelopmentofdeeplearningsystems,offersaparadigmaticexampleofthenature-nurturedichotomy’senduringinfluenceonhumanthought.Bothdistinctionsaretoooftenresolvedintostarkbinaries,whereasthedebateisbetterrepresentedintermsofsubtlecontinuumsanddifferencesamongststylesofexplanation.Althoughthepersistenceoftheoppositionbetweennatureandnurturesuggestsanunsolvablephilosophicalriddleattheheartofknowledgeacquisition,itcan,withcare,beofusetous.Thesameistrueoftheempiricist-nativistdichotomy.Wheninterpretedwithmoreattentiontothehistoryofphilosophyanditsprecisecontextofapplication,itcanencouragemoreusefulandprincipleddebatesbetweendistinctresearchmethodologies.
Infact,incaseswherescientistshavetakenpainstounderstandthedebate’shistory,itcanbeseentohavefosterednotablescientificdiscoveriesofthelastcentury,suchasAlbertEinstein’stheoryofspecialrelativityortheveryinventionofthedigitalcomputerandartificialneuralnetworksoverwhichtoday’sdebatesrage.ThephilosopherofscienceJohnNortonarguesthatEinstein’stheoryofspecialrelativitywasinspiredbyhisparticipationinareadinggrouponHume’sTreatisearound1902-1903withthemathematicianConradHabichtandphilosopherMauriceSolovine,fromwhichEinsteinobtainedadeepregardforHume’s
empiricism.Inautobiographicalnotesfrom1946,Einsteinwritesofhisdiscoveryoftherelativityofsimultaneity(toaninertialframeofreference)whichundergirdsspecialrelativitythat“thiscentralpointwasdecisivelyfurthered,inmycase,bythereadingofDavidHume’sandErnstMach’sphilosophicalwritings”(quotedinNorton2010).WhilerationalistphilosopherslikeImmanuelKantthoughtthatabsolutesimultaneitywasnecessarilyentailedbyouraprioriconceptionofspacetime,Einsteinreasonedthatifeventhesebedrockconceptswerelearnedfromexperience,thentheremightbeexceptionstotheminextremeconditions,suchaswhenobjectstravelatvelocitiesapproachingthespeedoflight.
Equallymomentousachievementscanbeattributedtoscientistslisteningtothenativistmuse;theneuroscientistGraceLindsayrecountshowtheearlyneuralnetworkpioneersMcCullochandPitts(1943)idolizedtherationalistphilosopherGottfriedLeibniz,whotheorizedthatthemindoperatesoveraninnatelogicalcalculusfromwhichalltruepropositionscouldbemechanicallydeduced(Lindsay2021Ch.3).
McCullochandPitts’ideathatthesecomplexlogicalandmathematicaloperationscouldbecomputedbylargenumbersofsimplecomponentsorganizedintherightkindofnetworkarrangementservedasdirectinspirationforbothJohnvonNeumann(1993)andFrankRosenblatt(1958),whoseworkscanbeseentohaveproducedboththeopposingresearchtraditionsresponsibleforthedigitalmicroprocessorarchitectureanddeepneuralnetworks(DNNs),respectively.
Here,Iarguethatthecurrentincarnationofthenativist-empiricistdebateinartificialintelligencepresentsuswithasimilargoldenopportunity,inwhichwemightattemptoneoftherarestfeatsofintellectualalchemy:theconversionofatimelessphilosophicalriddleintoatestableempiricalquestion.For,ifwecouldapplythedistinctiontothedeeplearningdebatewithoutconfusionorcaricature,thenwecouldsimplybuildsomeartificialagentsaccordingtonativistprinciples,andotherartificialagentsaccordingtoempiricistprinciples,andseewhichonesareultimatelythemostsuccessfulorhuman-like.Specifically,wecanmanuallyprogramthenativistsystemswithinnateabstractknowledge,andendowempiricistsystemswithgeneralcapacitiestolearnabstractknowledgefromsensoryexperience,andcomparetheperformanceofthesystemsonarangeofimportanttasks.Crucially,however,theempiricistsinthiscompetitionmustbeallowedmorerawmaterialsthanMarcus’formalspecificationallows,ifweaimtoholdafairandinformativecompetition.
Ifwecouldaccomplishthisconversion,philosophersandcomputerscientistswouldbothreaptherewards.Onthephilosophyside,empiricistshavefrequentlybeenaccusedofappealingtomagicatcriticalpointsintheirtheoriesofrationalcognition.LockeandHume,forexampleoftenassertedthatthemindperformssomeoperationwhichallowsittoextractsomeparticularbitofabstractknowledgefromexperiencebut—giventhescantunderstandingofthebrain’soperationsavailableatthetime—theycouldnotexplainhow.Carefullyexaminingthedetailsofrecentdeeplearningachievementsmightredeemsomeofthelargestsuchpromissorynotes,byshowinghowphysicalsystemsbuiltaccordingtoempiricistprinciplescanactuallyperformtheseoperations.Indexingthephilosophicaldebatetothesesystemscanfurtherimproveitsclarity;wherephilosophicalslogansarevagueandsubjecttointerpretation,computationalmodelsareprecise,withalltheirassumptionsexposedforphilosophicalscrutinyandempiricalvalidation.Wheresuccessful,theplausibilityoftheempiricistapproachtorationalcognitionsubstantiallyincreasesasaresult.Ofthebenefitstocomputerscience,philosophershavethoughtlongandhardaboutthechallengeofprovidingacompleteapproachtothehumanmindthatisconsistentwithempiricistconstraints,includinghowthemind’svariouscomponentsmightinteractandscaleuptothehighestformsofabstractknowledgeandrationalcognition.
Deeplearningisonlynowreachingfortheseheightsinitsmodelingambitions(e.g.GoyalandBengio2020),andsotheremaystillyetbeinsightstominefromthehistoryofempiricistphilosophythatcanbetransmutedintothenextengineeringinnovations.
Totheseends,Iheremountaninterdisciplinaryinvestigationintotheprospectsandimplicationsofrecentachievementsindeeplearning,combininginsightsfrombothcomputerscienceandphilosophy.Doingsocanbothanimatecurrentengineeringresearchwiththewarmthandwisdomofaclassicphilosophicaldebate,whilstsimultaneouslyrenderingthetermsofthatdebateclearerthantheyhaveyetbeeninitslonganddistinguishedhistory.Nevertheless,Iknowthatsuchaninterdisciplinaryprojectisbesetwithitsowndistinctiverisk.RichardEvans—aninterdisciplinaryresearcheratDeepMindwhohassoughttocreatemorepowerfuldeeplearningsystemsbyaugmentingthemwithlogicalmaximsthatheextractsfromKant’sCritiqueofPureReason(includingKant’saforementionedmaximofsimultaneity)—hasissuedasalutarywarningforprojectsembarkingundersuchambitions:
Thisisaninterdisciplinaryprojectandassuchisinever-presentdangeroffallingbetweentwostools,
neitherphilosophicallyfaithfultoKant’sintentionsnorcontributingmeaningfullytoAIresearch.Kanthimselfprovides:‘thewarningnottocarryonatthesametimetwojobswhichareverydistinctinthewaytheyaretobehandled,foreachofwhichaspecialtalentisperhapsrequired,andthecombinationofwhichinonepersonproducesonlybunglers.’[AK4:388]Thedangerwithaninterdisciplinaryproject,partAIandpartphilosophy,isthatbothpotentialaudiencesareunsatis?ed.(Evans2020)
WemusttakeEvans’s(andKant’s)warningtoheart.Yet,wemustalsoacknowledgethat,inpartbecausedeeplearningisimplicatedinthenature-nurturedistinction,philosophersareparticularlysuitedtoundertaketheproject.Whateverourotherbungles,wehaveexperiencetendingtothisparticularfire.Toproceed,however,wemustdiscardstoolsaltogether.Wewillbebetterabletogaugethecurrentandfutureachievementsofdeeplearningbyinsteadbuildingamoreaccommodatingbench,withampleroomforaspectrumofdistinctivebackgroundsandexpertise.Giventheintensityofthecurrentdiscussionamongsttheoristsgrapplingwithdeeplearning’spotential,themostproductivewayforwardinvolvesloweringthedebate’stemperatureuntilthesmokeclears,andinvitingtheoristsfromavarietyofbackgroundswithdistinctiveexpertiseandastakeindeeplearning’simplicationstopatientlyworkthroughthedetailstogether.
Howtosimmerthingsdown:FromFormsandslatestostylesoflearning
Thankstorigorousinvestigationinseveraldisciplines,todayweknowthatnearlyallknowledgeoriginatesfromacombinationofbothinnateandexperientialfactors.Bothradicalnativismandradicalempiricismare,inshort,false.Despitethis,morenuancedexpositionsofthedistinctionbetweenempiricismandnativismremaintheexceptionandhavebeenalmostentirelyabsentfromdiscussionsoverdeeplearning.9Withoutabetterwaytounderstandthesubstanceofthedistinction,therecognitionofthisecumenicaloutcomecarries,onbothsides,thethreatofobliteration.ThismaybewhyLockeandHume’se
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024全新一代智能家居設(shè)備租賃服務(wù)合同下載3篇
- 2024年度新能源汽車充電樁安裝與銷售獨(dú)家代理合同3篇
- 二項(xiàng)式定理及應(yīng)用課件
- 寬帶合作合同范例
- 門面提前終止合同范例
- 購房出資合同范例
- 商鋪出兌合同范例
- 黃金產(chǎn)品維修合同范例
- 勞務(wù)合同范例兒
- 風(fēng)帆股合同范例
- 作文互改互批互評(píng)探究課題研究方案
- 四川內(nèi)江城市文化介紹宣傳PPT
- 建筑垃圾再生利用方案PPT模板
- 中華遲氏通譜字輩排行
- 調(diào)試單位調(diào)試大綱
- 人教五年級(jí)英語上冊(cè)2011版五年級(jí)英語上冊(cè)《Lesson17》教案及教學(xué)反思
- 2輸變電工程施工質(zhì)量驗(yàn)收統(tǒng)一表式(變電工程土建專業(yè))
- 交換機(jī)安裝調(diào)試記錄表實(shí)用文檔
- 提高床頭交接班執(zhí)行率
- (完整)標(biāo)前協(xié)議
- 房產(chǎn)公司15周年年會(huì)主持詞5篇
評(píng)論
0/150
提交評(píng)論