![混合人工智能颶風(fēng)預(yù)報(bào)系統(tǒng):深度學(xué)習(xí)集成方法和卡爾曼濾波器_第1頁](http://file4.renrendoc.com/view14/M01/1D/08/wKhkGWYm7EKAFBS3AAF32TtMwxE589.jpg)
![混合人工智能颶風(fēng)預(yù)報(bào)系統(tǒng):深度學(xué)習(xí)集成方法和卡爾曼濾波器_第2頁](http://file4.renrendoc.com/view14/M01/1D/08/wKhkGWYm7EKAFBS3AAF32TtMwxE5892.jpg)
![混合人工智能颶風(fēng)預(yù)報(bào)系統(tǒng):深度學(xué)習(xí)集成方法和卡爾曼濾波器_第3頁](http://file4.renrendoc.com/view14/M01/1D/08/wKhkGWYm7EKAFBS3AAF32TtMwxE5893.jpg)
![混合人工智能颶風(fēng)預(yù)報(bào)系統(tǒng):深度學(xué)習(xí)集成方法和卡爾曼濾波器_第4頁](http://file4.renrendoc.com/view14/M01/1D/08/wKhkGWYm7EKAFBS3AAF32TtMwxE5894.jpg)
![混合人工智能颶風(fēng)預(yù)報(bào)系統(tǒng):深度學(xué)習(xí)集成方法和卡爾曼濾波器_第5頁](http://file4.renrendoc.com/view14/M01/1D/08/wKhkGWYm7EKAFBS3AAF32TtMwxE5895.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
AhybridAIhurricaneforecastingsystem:deeplearningensembleapproachandKalmanfilter
EbrahimEslamiandAIteammembersPI:Dr.YunsooChoi
DepartmentofEarthandAtmosphericSciences
UniversityofHouston
April2019
Yanniclops
AhmedKhanSalman EbrahimEslami
AlqamahSayeed
Overview
2007ThomsonHigherEducation
3
Overview
Trackingthepathandforecastingtheintensityofhurricanesarechallenging:
Dynamicalmodels,likeHWRF,produceasignificantmodel-measurementerror.
Accurateforecastingisverydifficulttoachieveafterlandfall.
4
Machinelearningcanbeasupplementaryapproachtotunehurricaneforecasting.
Overview
TropicalCycloneHistoryPacific:since1949,Atlantic:since1851
5
Introduction
ArtificialIntelligence
MachineLearning
NeuralNetwork
DeepNeural
Network
Deep
ConvolutionalNeuralNetwork
DeepLearning
Regressive
DeepConvolutional
NeuralNetwork
6
PAGE
7
DeepLearning
RegressiveDeepConvolutionalNeuralNetwork:
Hurricanemodel1Hurricanemodel2
…
Hurricanemodeln
Predictedhurricanepathandintensity
…
…
PAGE
8
HurricaneForecasting
Introduction
Atropicalcycloneforecastinvolvesthepredictionofseveralinterrelated
features,including:
Track,intensity,rainfall,stormsurge,areasthreatened,etc.
NationalHurricaneCenter(NHC)normallyissuesaforecastevery6hoursandupto72hours.
Officialforecastisbasedontheguidanceobtainedfromavarietyofsubjectiveandobjectivemodels.
Ensemblemodelisamainstreamapproachinhurricaneforecasting.
Machinelearning(deeplearning)isprovenasapowerfulensembletechnique.
Introduction
Dynamicalmodel
Statistical
model
ML
Ensemblemodel
Bestforhurricane
intensityforecasting
Bestforhurricanetrackforecasting
HurricaneForecasting
PAGE
10
InputModels
Summaryofglobalandregionaldynamicalmodelsfortrack,intensity,andwindradii:
ATCF*ID
ModelName
HorizontalResolution
Cycle/RunPeriod
NHCForecastParameters
NVGM/NVGI
NavyGlobalEnvironmentalModel
Spectral(~31km)
6hr(144hr)
Trackandintensity
AVNO/AVNIGFSO/GFSI
GlobalForecastSystem
Spectral(~13km)
6hr(180hr)
Trackandintensity
EMX/EMXI/EMX2
EuropeanCentreforMedium-RangeWeatherForecasts
Spectral(~9km)
12hr(240hr)
Trackandintensity
EGRR/EGRI/EGR2
U.K.MetOfficeGlobalModel
Gridpoint(~10km)
12hr(144hr)
Trackandintensity
CMC/CMCI
CanadianDeterministicPredictionSystem
Gridpoint(~25km)
12hr(240hr)
Trackandintensity
HWRF/HWFI
HurricaneWeatherResearchandForecastsystem
NestedGridpoint(18-6-2km)
6hr(126hr)
Trackandintensity
CTCX/CTCI
NRLCOAMPS-TCw/GFS
initialandboundaryconditions
NestedGridpoint(45-15-5km)
6hr(126hr)
Trackandintensity
HMON/HMNI
HurricaneMulti-scaleOcean-coupledNon-hydrostaticmodel
NestedGridpoint(18-6-2km)
6hr(126hr)
Trackandintensity
*TheAutomatedTropicalCycloneForecastingSystem(ATCF)
/modelsummary.shtml
Methodology
Input
3sub-models
DNN
Model1
Model2
.
.
.
Modeln
Track(allmodels)
Intensity(allmodels)
UHMLEnsembleHurricaneForecastingSystem:
GlobalandRegionalDynamicalModels
Output
IBTrACS:
TropicalCycloneBestTrackData
HurricaneIntensityandTrack
Track
Intensity
DNNsmodelingtimeperiod:
Trainingdata: 2003–2016
Nextstepprediction: 2017(e.g.HurricaneHarvey)
PAGE
12
Methodology
Weusedthreesub-modelsinourensemblemodel:
Intensitypredictor
Directionpredictor
Traveldistancepredictor
RegressiveDeepConvolutionalNeuralNetworkwasusedforallDNNmodels.
Afterensembletrackmodel,anEnsembleKalmanfilter(EnKF)wasusedtobias-
correctthehurricane’spath.
CNN
Model1
Model2
.
.
.
Modeln
Hurricane
Models
Output
(BestTrack)
Input
(Models)
DNN3
DNN2
DNN1
TravelDistance
Direction
Intensity
TravelDistance
Direction
Intensity
EnKF
ForecastedHurricanePathandIntensity
Methodology
EnsembleKalmanFilter(EnKF)
Ensembletrack
model(DNN2+DNN3)
Step1
Step2
Trackforecastbiases
Bias-corrected
hurricanetracks
EnKFappliedto
storms
HurricaneHarvey(2017
HurricaneHarvey(2017)
PAGE
16
Results
AllTropicalcyclones(models&besttrack)fortheNorthAtlanticin2017:
RMSEforhurricanepositionandintensity:
UHMachineLearningEnsemble(UHMLE)HurricaneModelingSystemvs.NHCofficialforecast(above)andothermodels(right).
TCLPHCCAFSSECTCIEMXIGFSIHMNIHWFIOCD5
NHCOfficial
UHMLE
Guidancemodelerrors(nmi)Intensityforecasterrors(knots)
0 20 40 60 80 100 120
Summary
Wedevelopedahybridthree-stepDNN-basedensemblehurricaneforecastingmodelwithEnsembleKalmanfilter(EnKF)post-processing.Themodelusedtheoutputofeightdynamicalhurricanemodels.
WeusedalltropicalcyclonesinAtlanticOceanfrom2003-2016andtestedthemodelfor
thosein2017.
EnKFfurtherimprovedthehurricanetrackforecastingbyreducingthebias.
ThepreliminarilyresultsshowstatisticaladvantagesoverNHCofficialforecasts–~13%
improvementintrackforecastbiasesand~30%improvementinintensityforecastbiases.
Challenges:
Long-termforecastingandfloodingpredictioncouldbechallengingduetouncertain
trainingdatasets.
Acknowledgements
ThankstoEarthScienceInformationPartner(ESIP)forseedfunding
ThankstoDr.Young-JoonKim(NOAAAFS)forprovidingausefulsuggestiononthisstudy
On-goingHurricanestudy
Imageforecastingusingadvanceddeepneuralnetwork:
ForAODandHurricanetracking
PAGE
20
Motivation
Source:airchem.snu.ac.kr
AODprediction(left)andhurricanetracking(right)arebothimageforecastingproblems…
L
HurricaneKatia
HurricaneIrma,2017(source:GOES,NOAA)
PAGE
22
Methodology
TestingImageForecastingwithAI:
Question:CanAIpredictbasicmovementsfromjustreceivingpreviousstateswith
Observation
justimageasinput?
Methodology
TestingImageForecastingwithAI:
Question:CanAIpredictbasicmovementsfromjustreceivingpreviousstateswith
Observation
justimageasinput?
Prediction
YESITCAN!
Methodology
Observation
TestingImageForecasting:Part2
CantheAIfollowtwofeaturestravelingindependentlyand
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度攤鋪機(jī)租賃與操作培訓(xùn)合同范本
- 個(gè)人合伙的協(xié)議書(15篇)
- 設(shè)計(jì)方案評審函
- 2025年健身俱樂部事故免責(zé)合同
- 2025年人工智能合作協(xié)議書
- 2025年臨時(shí)用電合作協(xié)議書規(guī)范文本
- 2025年飛機(jī)空調(diào)車ACM項(xiàng)目規(guī)劃申請報(bào)告模稿
- 2025年共同經(jīng)營商業(yè)地產(chǎn)合作協(xié)議
- 2025年短期勞動(dòng)合同范例
- 2025年專利申請授權(quán)實(shí)施合同樣本
- 城市綠化與生態(tài)環(huán)境改善
- 2024-2025學(xué)年中小學(xué)校第二學(xué)期師德師風(fēng)工作計(jì)劃:必看!新學(xué)期師德師風(fēng)建設(shè)秘籍大公開(附2月-7月工作安排表)
- 《急性心力衰竭的急救處理》課件
- 小學(xué)六年級數(shù)學(xué)上冊《簡便計(jì)算》練習(xí)題(310題-附答案)
- 青海省西寧市海湖中學(xué)2025屆中考生物仿真試卷含解析
- 2024年河南省《輔警招聘考試必刷500題》考試題庫及答案【全優(yōu)】
- -情景交際-中考英語復(fù)習(xí)考點(diǎn)
- 2024年中國養(yǎng)老產(chǎn)業(yè)商學(xué)研究報(bào)告-銀發(fā)經(jīng)濟(jì)專題
- 高教版2023年中職教科書《語文》(基礎(chǔ)模塊)下冊教案全冊
- 人教版英語七年級上冊閱讀理解專項(xiàng)訓(xùn)練16篇(含答案)
- 房地產(chǎn)公司管理制度
評論
0/150
提交評論