AI執(zhí)行者指南報告_第1頁
AI執(zhí)行者指南報告_第2頁
AI執(zhí)行者指南報告_第3頁
AI執(zhí)行者指南報告_第4頁
AI執(zhí)行者指南報告_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Anexecutive’sguidetoAI

PAGE

1

Anexecutive’sguidetoAI

Stayingaheadintheacceleratingartificial-intelligenceracerequiresexecutivestomakenimble,informeddecisionsaboutwhereandhowtoemployAIintheirbusiness.Onewaytopreparetoactquickly:knowtheAIessentialspresentedinthisguide.

Artificialintelligence:Adefinition

AIistypicallydefinedastheabilityofamachinetoperformcognitivefunctionsweassociatewithhumanminds,suchasperceiving,reasoning,learning,andproblemsolving.ExamplesoftechnologiesthatenableAItosolvebusinessproblemsareroboticsandautonomousvehicles,computervision,language,virtualagents,andmachinelearning.

Machinelearning:Adefinition

MostrecentadvancesinAIhavebeenachievedbyapplyingmachinelearningtoverylargedatasets.Machine-learningalgorithmsdetectpatternsandlearnhowtomakepredictionsandrecommendationsbyprocessingdataandexperiences,ratherthanbyreceivingexplicitprogramminginstruction.Thealgorithmsalsoadaptinresponsetonewdataandexperiencestoimproveefficacyovertime.

Understandingthemajortypesofmachinelearning

Supervisedlearning

Whatitis

Analgorithmusestrainingdataandfeedbackfromhumanstolearntherelationshipofgiveninputstoagivenoutput(eg,howtheinputs“timeofyear”and“interestrates”predicthousingprices)

Whentouseit

Youknowhowtoclassifytheinputdataandthetypeofbehavioryouwanttopredict,butyouneedthealgorithmtocalculateitforyouonnewdata

Howitworks

Ahumanlabelseveryelementoftheinputdata(eg,inthecaseof

predictinghousingprices,labelstheinputdataas“timeofyear,”“interestrates,”etc)anddefinestheoutputvariable(eg,housingprices)

Thealgorithmistrainedonthedatatofindtheconnectionbetweentheinputvariablesandtheoutput

Oncetrainingiscomplete—typicallywhenthealgorithmissufficientlyaccurate—thealgorithmisappliedtonewdata

Unsupervisedlearning

Analgorithmexploresinputdatawithoutbeinggiven

anexplicitoutputvariable(eg,explorescustomerdemographicdatatoidentifypatterns)

Youdonotknowhowtoclassifythedata,andyouwantthealgorithmtofindpatternsandclassifythedataforyou

Thealgorithmreceivesunlabeleddata(eg,asetofdatadescribingcustomerjourneysonawebsite)

Itinfersastructurefromthedata

Thealgorithmidentifiesgroupsofdatathatexhibitsimilarbehavior(eg,formsclusters

ofcustomersthatexhibitsimilarbuyingbehaviors)

Reinforcementlearning

Analgorithmlearnstoperformatasksimplybytryingto

maximizerewardsitreceivesforitsactions(eg,maximizespointsitreceivesforincreasingreturnsofaninvestmentportfolio)

Youdon’thavealotoftrainingdata;youcannotclearlydefinetheidealendstate;ortheonlywaytolearnabouttheenvironmentistointeractwithit

Thealgorithmtakesanactionontheenvironment(eg,makesatradeinafinancialportfolio)

Itreceivesarewardiftheactionbringsthemachineastepclosertomaximizingthetotalrewardsavailable(eg,thehighesttotalreturnontheportfolio)

Thealgorithmoptimizesforthebestseriesofactionsbycorrectingitselfovertime

Supervisedlearning:Algorithmsandsamplebusinessusecases1

Algorithms Samplebusinessusecases

Linearregression

Highlyinterpretable,standardmethodformodel-ingthepastrelationshipbetweenindependentinputvariablesanddependentoutputvariables(whichcanhaveaninfinitenumberofvalues)tohelppredictfuturevaluesoftheoutputvariables

Logisticregression

Extensionoflinearregressionthat’susedforclassifationtasks,meaningtheoutputvariableisbinary(eg,onlyblackorwhite)ratherthan

continuous(eg,aninfinitelistofpotentialcolors)

Linear/quadraticdiscriminantanalysisUpgradesalogisticregressiontodealwithnonlinearproblems—thoseinwhichchangestothevalueofinputvariablesdonotresultinproportionalchangestotheoutputvariables.

Understandproduct-salesdriverssuchascompetitionprices,distribution,advertisement,etc

Optimizepricepointsandestimateproduct-priceelasticities

Classifycustomersbasedonhowlikelytheyaretorepayaloan

Predictifaskinlesionisbenignormalignantbasedonitscharacteristics(size,shape,color,etc)

Predictclientchurn

Predictasaleslead’slikelihoodofclosing

Decisiontree

Highlyinterpretableclassificationorregressionmodelthatsplitsdata-featurevaluesintobranchesatdecisionnodes(eg,ifafeatureisacolor,eachpossiblecolorbecomesanewbranch)untilafinaldecisionoutputismade

Provideadecisionframeworkforhiringnewemployees

Understandproductattributesthatmakeaproductmostlikelytobepurchased

NaiveBayes

ClassificationtechniquethatappliesBayestheorem,whichallowstheprobabilityofaneventtobecalculatedbasedonknowledgeoffactorsthatmightaffectthatevent(eg,ifanemailcontainstheword“money,”thentheprobabilityofitbeingspamishigh)

Analyzesentimenttoassessproductperceptioninthemarket

Createclassifierstofilterspamemails

1We’velistedsomeofthemostcommonlyusedalgorithmstoday—thislistisnotintendedtobeexhaustive.Additionally,anumberofdifferentmodelscanoftensolvethesamebusinessproblem.Conversely,thenatureofanavailabledatasetoftenprecludesusingamodeltypicallyemployedtosolveaparticularproblem.Forthesereasons,thesamplebusinessusecasesaremeantonlytobeillustrativeofthetypesofproblemsthesemodelscansolve.

Algorithms Samplebusinessusecases

Supportvectormachine

Atechniquethat’stypicallyusedforclassificationbutcanbetransformedtoperformregression.Itdrawsanoptimaldivisionbetweenclasses(aswideaspossible).Italsocanbequicklygeneralizedtosolvenonlinearproblems

Randomforest

Classificationorregressionmodelthatimprovestheaccuracyofasimpledecisiontreebygeneratingmultipledecisiontreesandtakingamajorityvoteofthemtopredicttheoutput,whichisacontinuousvariable(eg,age)foraregressionproblemandadiscretevariable(eg,eitherblack,white,orred)forclassification

Predicthowmanypatientsahospitalwillneedtoserveinatimeperiod

Predicthowlikelysomeoneistoclickonanonlinead

Predictcallvolumeincallcentersforstaffingdecisions

Predictpowerusageinanelectrical-distributiongrid

AdaBoost

Classificationorregressiontechniquethatusesamultitudeofmodelstocomeupwithadecisionbutweighsthembasedontheiraccuracyinpredictingtheoutcome

Detectfraudulentactivityincredit-cardtransactions.Achievesloweraccuracythandeeplearning

Simple,low-costwaytoclassifyimages(eg,recognizelandusagefromsatelliteimagesforclimate-changemodels).Achievesloweraccuracythandeeplearning

Gradient-boostingtrees

Classificationorregressiontechniquethatgeneratesdecisiontreessequentially,whereeachtreefocusesoncorrectingtheerrorscomingfromtheprevioustreemodel.Thefinaloutputisacombinationoftheresultsfromalltrees

Forecastproductdemandandinventorylevels

Predictthepriceofcarsbasedontheircharacteristics(eg,ageandmileage)

Simpleneuralnetwork

Modelinwhichartificialneurons(software-basedcalculators)makeupthreelayers(aninputlayer,ahiddenlayerwherecalculationstakeplace,andanoutputlayer)thatcanbeusedtoclassifydataorfindtherelationshipbetweenvariablesinregressionproblems

Predicttheprobabilitythatapatientjoinsahealthcareprogram

Predictwhetherregistereduserswillbe

willingornottopayaparticularpriceforaproduct

Unsupervisedlearning:Algorithmsandsamplebusinessusecases2

Algorithms Samplebusinessusecases

K-meansclustering

Putsdataintoanumberofgroups(k)thateachcontaindatawithsimilarcharacteristics(asdeterminedbythemodel,notinadvancebyhumans)

Gaussianmixturemodel

Ageneralizationofk-meansclusteringthatprovidesmoreflexibilityinthesizeandshapeofgroups(clusters)

Hierarchicalclustering

Splitsoraggregatesclustersalongahierarchicaltreetoformaclassificationsystem

Segmentcustomersintogroupsbydistinctcharateristics(eg,agegroup)—forinstance,tobetterassignmarketingcampaignsorpreventchurn

Segmentcustomerstobetterassignmarketingcampaignsusingless-distinctcustomercharacteristics(eg,productpreferences)

Segmentemployeesbasedonlikelihoodofattrition

Clusterloyalty-cardcustomersintoprogressivelymoremicrosegmentedgroups

Informproductusage/developmentbygroupingcustomersmentioningkeywordsinsocial-mediadata

Recommendersystem

Oftenusesclusterbehaviorpredictiontoidentifytheimportantdatanecessaryformakingarecommendation

Recommendwhatmoviesconsumersshouldviewbasedonpreferencesofothercustomerswithsimilarattributes

Recommendnewsarticlesareadermightwanttoreadbasedonthearticlesheorheisreading

2We’velistedsomeofthemostcommonlyusedalgorithmstoday—thislistisnotintendedtobeexhaustive.Additionally,anumberofdifferentmodelscanoftensolvethesamebusinessproblem.Conversely,thenatureofanavailabledatasetoftenprecludesusingamodeltypicallyemployedtosolveaparticularproblem.Forthesereasons,thesamplebusinessusecasesaremeantonlytobeillustrativeofthetypesofproblemsthesemodelscansolve.

Anexecutive’sguidetoAI

PAGE

6

Reinforcementlearning:Samplebusinessusecases3

Optimizethetradingstrategyforanoptions-tradingportfolio

Balancetheloadofelectricitygridsinvaryingdemandcycles

Stockandpickinventoryusingrobots

Optimizethedrivingbehaviorofself-drivingcars

Optimizepricinginrealtimeforanonlineauctionofaproductwithlimitedsupply

Deeplearning:Adefinition

Deeplearningisatypeofmachinelearningthatcanprocessawiderrangeofdataresources,requireslessdatapreprocessingbyhumans,andcanoftenproducemoreaccurateresultsthantraditionalmachine-learningapproaches.Indeeplearning,interconnectedlayersofsoftware-basedcalculatorsknownas“neurons”formaneuralnetwork.Thenetworkcaningestvastamountsofinputdataandprocessthemthroughmultiplelayersthatlearnincreasinglycomplexfeaturesofthedataateachlayer.Thenetworkcanthenmakeadeterminationaboutthedata,learnifitsdeterminationiscorrect,andusewhatithaslearnedtomakedeterminationsaboutnewdata.Forexample,onceitlearnswhatanobjectlookslike,itcanrecognizetheobjectinanewimage.

3Thesamplebusinessusecasesaremeantonlytobeillustrativeofthetypesofproblemsthesemodelscansolve.

Understandingthemajordeeplearningmodelsandtheirbusinessusecases4

Convolutionalneuralnetwork Recurrentneuralnetwork

Whatitis

Amultilayeredneuralnetworkwithaspecialarchitecturedesignedtoextractincreasinglycomplexfeaturesofthedataateachlayertodeterminetheoutput

Whentouseit

Whenyouhaveanunstructureddataset(eg,images)andyouneedtoinferinformationfromit

Amultilayeredneuralnetworkthatcanstoreinformationincontextnodes,allowingittolearndatasequencesandoutputanumberoranothersequence

Whenyouareworkingwithtime-seriesdataorsequences(eg,audiorecordingsortext)

4Thesamplebusinessusecasesaremeantonlytobeillustrativeofthetypesofproblemsthesemodelscansolve.

Convolutionalneuralnetwork Recurrentneuralnetwork

Howitworks

Processinganimage

Theconvolutionalneuralnetwork(CNN)receivesanimage—forexample,oftheletter“A”—thatitprocessesasacollectionofpixels

Inthehidden,innerlayersofthemodel,itidentifiesuniquefeatures,forexample,theindividuallinesthatmakeup“A”

TheCNNcannowclassifyadifferentimageastheletter“A”ifitfindsinittheuniquefeaturespreviouslyidentifiedasmakinguptheletter

Predictingthenextwordinthesentence“Areyoufree ?”

Arecurrentneuralnetwork(RNN)neuronreceivesacommandthatindicatesthestartofasentence

Theneuronreceivestheword“Are”andthenoutputsavectorofnumbersthatfeedsbackintotheneurontohelpit“remember”thatitreceived“Are”(andthatitreceiveditfirst).Thesameprocessoccurswhenitreceives“you”and“free,”

withthestateoftheneuronupdatinguponreceivingeachword

Afterreceiving“free,”theneuronassignsaprobabilitytoeverywordintheEnglishvocabularythatcouldcompletethesentence.Iftrainedwell,theRNNwillassigntheword“tomorrow”oneofthehighestprobabilitiesandwillchooseittocompletethesentence

Businessusecases

Diagnosehealthdiseasesfrommedicalscans

Detectacompanylogoinsocialmediatobetterunderstandjointmarketing

opportunities(eg,pairingofbrandsinoneproduct)

Understandcustomerbrandperceptionandusagethroughimages

Detectdefectiveproductsonaproductionlinethroughimages

Generateanalystreportsforsecuritiestraders

Providelanguagetranslation

Trackvisualchangestoanareaafteradisastertoassesspotentialdamageclaims(inconjunctionwithCNNs)

Assessthelikelihoodthatacredit-cardtransactionisfraudulent

Generatecaptionsforimages

Powerchatbotsthatcanaddressmorenuancedcustomerneedsandinquiries

Timeline:WhyAInow?

Aconvergenceofalgorithmicadvances,dataproliferation,andtremendousincreasesincomputingpowerandstoragehaspropelledAIfromhypetoreality.

Algorithmicadvancements

+

1805–Legendrelaysthegroundworkformachinelearning

FrenchmathematicianAdrien-MarieLegendrepublishestheleastsquaremethodforregression,whichheusedtodetermine,fromastronomicalobservations,theorbitsofbodiesaroundthesun.Althoughthismethodwasdevelopedasastatisticalframework,itwouldprovidethebasisformanyoftoday’smachine-learningmodels.

+

1958–Rosenblattdevelopsthefirstself-learningalgorithm

AmericanpsychologistandcomputerscientistFrankRosenblattcreatestheperceptronalgorithm,anearlytypeofartificialneuralnetwork(ANN),whichstandsasthefirstalgorithmicmodelthatcouldlearnonitsown.AmericancomputerscientistArthurSamuelwouldcointheterm“machinelearning”thefollowingyearforthesetypesofself-learningmodels(aswellasdevelopagroundbreakingcheckersprogramseenasanearlysuccessinAI).

+

1965–Birthofdeeplearning

UkrainianmathematicianAlexeyGrigorevichIvakhnenkodevelopsthefirstgeneralworkinglearningalgorithmsforsupervisedmultilayerartificialneuralnetworks(ANNs),inwhichseveralANNsarestackedontopofoneanotherandtheoutputofoneANNlayerfeedsintothenext.Thearchitectureisverysimilartotoday’sdeep-learningarchitectures.

+

1986–Backpropagationtakeshold

AmericanpsychologistDavidRumelhart,

BritishcognitivepsychologistandcomputerscientistGeoffreyHinton,andAmericancomputerscientistRonaldWilliamspublishonbackpropagation,popularizingthis

keytechniquefortrainingartificialneuralnetworks(ANNs)thatwasoriginallyproposedbyAmericanscientistPaulWerbosin1982.

BackpropagationallowstheANNtooptimizeitselfwithouthumanintervention(inthiscase,itfoundfeaturesinfamily-treedatathatweren’tobviousorprovidedtothealgorithminadvance).Still,lackofcomputationalpower

andthemassiveamountsofdataneededtotrainthesemultilayerednetworkspreventANNsleveragingbackpropagationfrombeingusedwidely

Explosionofdata

+ +

1991–OpeningoftheWorldWideWeb

TheEuropeanOrganizationforNuclearResearch(CERN)beginsopeninguptheWorldWideWebtothepublic.

Early2000s–BroadbandadoptionbeginsamonghomeInternetusers

BroadbandallowsusersaccesstoincreasinglyspeedyInternetconnections,upfromthepaltry

56kbpsavailablefordownloadingthroughdial-upinthelate1990s.Today,availablebroadbandspeedscansurpass100mbps

(1mbps=1,000kbps).Bandwidth-hungryapplicationslike

YouTubecouldnothavebecomecommerciallyviablewithouttheadventofbroadband.

Exponentialincreasesincomputingpowerandstorage

+

1965–Moorerecognizesexponentialgrowthinchippower

IntelcofounderGordonMoorenoticesthatthenumberoftransistorspersquareinchonintegratedcircuitshasdoubledeveryyearsincetheirinvention.HisobservationbecomesMoore’slaw,whichpredictsthetrendwillcontinueintotheforeseeablefuture(althoughitlaterprovestodosoroughlyevery18months).Atthetime,state-of-the-artcomputationalspeedisintheorderofthreemillionfloating-pointoperationspersecond(FLOPS).

+

1997–IncreaseincomputingpowerdrivesIBM’sDeepBlue

victoryoverGarryKasparovDeepBlue’ssuccessagainsttheworldchesschampionlargelystemsfrommasterfulengineeringandthetremendouspowercomputerspossessatthattime.DeepBlue’scomputerachievesaround11gigaFLOPS(11billionFLOPS).

+

1999–MorecomputingpowerforAIalgorithmsarrives…butnoonerealizesityet

NvidiareleasestheGeForce256graphicscard,marketedastheworld’sfirsttruegraphicsprocessingunit(GPU).Thetechnologywilllaterprove

fundamentaltodeeplearningbyperformingcomputationsmuchfasterthancomputerprocessingunits(CPUs).

9 Anexecutive’sguidetoAI

+

1989–BirthofCNNsforimagerecognitionFrenchcomputerscientistYannLeCun,nowdirectorofAIresearchforFacebook,andotherspublishapaperdescribinghowatypeofartificialneuralnetworkcalledaconvolutionalneuralnetwork(CNN)iswellsuitedfor

shape-recognitiontasks.LeCunandteamapplyCNNstothetaskofrecognizinghandwrittencharacters,withtheinitialgoalofbuildingautomaticmail-sortingmachines.Today,CNNsarethestate-of-the-artmodelforimagerecognitionandclassification.

+

+

1992–UpgradedSVMsprovideearlynatural-language-processingsolutionComputerengineersBernhardE.Boser(Swiss),IsabelleM.Guyon(French),andRussianmathematicianVladimirN.Vapnikdiscoverthatalgorithmicmodelscalledsupportvectormachines(SVMs)canbeeasilyupgradedtodealwithnonlinearproblemsbyusingatechniquecalledkerneltrick,leadingtowidespreadusageofSVMsinmanynatural-language-processingproblems,suchasclassifyingsentimentandunderstandinghumanspeech.

1997–RNNsgeta“memory,”positioningthemtoadvancespeechtotext

+

+

In1991,GermancomputerscientistSeppHochreitershowedthataspecialtypeofartificialneuralnetwork(ANN)calledarecurrentneuralnetwork(RNN)canbeusefulinsequencingtasks(speechtotext,forexample)ifitcouldrememberthebehaviorofpartsequencesbetter.In1997,HochreiterandfellowcomputerscientistJürgenSchmidhubersolvetheproblembydevelopinglongshort-termmemory(LSTM).Today,RNNswithLSTMareusedinmanymajorspeech-recognitionapplications.

+

1998–BrinandPagepublishPageRankalgorithm

+

+

Thealgorithm,whichrankswebpageshigherthemoreotherwebpageslinktothem,formstheinitialprototypeofGoogle’ssearchengine.ThisbrainchildofGooglefoundersSergeyBrinandLarryPagerevolutionizesInternetsearches,openingthedoortothecreationandconsumptionofmorecontentanddataontheWorldWideWeb.Thealgorithmwouldalso

goontobecomeoneofthemostimportantforbusinessesastheyvieforattentiononanincreasinglysprawlingInternet.

2004–Facebookdebuts

HarvardstudentMarkZuckerbergandteamlaunch“Thefacebook,”asitwasoriginallydubbed.Bytheendof2005,thenumberofdata-generating

Facebookusersapproachessixmillion.

2004–Web2.0hitsitsstride,launchingtheeraofuser-generateddata

Web2.0referstotheshiftingoftheInternetparadigmfrompassivecontentviewingtointeractiveandcollaborativecontentcreation,socialmedia,blogs,video,andotherchannels.PublishersTimO’ReillyandDaleDoughertypopularize

theterm,thoughitwascoinedbydesignerDarcyDiNucciin1999.

2005–YouTubedebuts

Withinabout18months,thesitewouldserveupalmost100millionviewsperday.

2005–NumberofInternetusersworldwidepassesone-billionmark

2002—Amazonbringscloudstorageandcomputingtothemasses

+

AmazonlaunchesitsAmazonWebServices,offeringcloud-basedstorageandcomputingpowertousers.Cloudcomputingwouldcometorevolutionizeanddemocratizedatastorageandcomputation,givingmillions

ofusersaccesstopowerfulITsystems—previouslyonlyavailabletobigtechcompanies—atarelativelylowcost.

+

2004–DeanandGhemawatintroducetheMapReducealgorithmtocopewithdataexplosion

WiththeWorldWideWebtakingoff,Googleseeksoutnovel

ideastodealwiththeresultingproliferationofdata.ComputerscientistJeffDean(currentheadofGoogleBrain)andGooglesoftwareengineerSanjayGhemawatdevelopMapReducetodealwithimmenseamountsofdatabyparallelizingprocessesacross

largedatasetsusingasubstantialnumberofcomputers.

+

2005–Costofonegigabyteofdiskstoragedropsto$0.79,from$277tenyearsearlierAndthepriceofDRAM,atypeofrandom-accessmemory(RAM)commonlyusedinPCs,dropsto

$158pergigabyte,from$31,633in1995.

10 Anexecutive’sguidetoAI

+

2006–Hintonreenergizestheuseofdeep-learningmodelsTospeedthetrainingofdeep-

learningmodels,GeoffreyHintondevelopsawaytopretrainthemwithadeep-beliefnetwork(aclassofneuralnetwork)beforeemployingbackpropagation.Whilehismethodwouldbecomeobsoletewhencomputationalpowerincreased

toalevelthatallowedforefficientdeep-learning-modeltraining,Hinton’sworkpopularizedtheuseofdeeplearningworldwide—andmanycredithimwithcoiningthephrase“deeplearning.”

2007–IntroductionoftheiPhonepropelssmartphonerevolution—andampsupdatageneration

+

ApplecofounderandCEOSteveJobsintroducestheiPhoneinJanuary2007.Thetotalnumberofsmartphonessoldin2007reachesabout122million.Theeraofaround-the-clockconsumptionandcreationofdataandcontentbysmartphoneusersbegins.

2006–CuttingandCafarellaintroduceHadooptostoreandprocessmassiveamountsofdata

+

InspiredbyGoogle’sMapReduce,computerscientistsDougCuttingandMikeCafarelladeveloptheHadoopsoftwaretostoreandprocessenormousdatasets.

Yahoousesitfirst,todealwiththeexplosionofdatacomingfromindexingwebpagesandonlinedata.

2009–UCBerkeleyintroducesSparktohandlebigdatamodelsmoreefficientlyDevelopedbyRomanian-CanadiancomputerscientistMateiZahariaatUCBerkeley’sAMPLab,SparkstreamshugeamountsofdataleveragingRAM,makingitmuchfasteratprocessingdatathansoftwarethatmustread/writeonharddrives.Itrevolutionizestheabilitytoupdatebigdataandperformanalyticsinrealtime.

++

2009–NgusesGPUstotraindeep-learningmodelsmoreeffectively

AmericancomputerscientistAndrewNgandhisteamatStanfordUniversityshowthattrainingdeep-beliefnetworkswith100millionparametersonGPUsismorethan70timesfasterthandoingsoonCPUs,afindingthatwouldreducetrainingthatoncetookweekstoonlyoneday.

2010–Numberofsmartphonessoldintheyearnears300million

+

Thisrepresentsanearly2.5timesincreaseoverthenumbersoldin2007.

+

2010–MicrosoftandGoogleintroducetheirclouds

CloudcomputingandstoragetakeanothersteptowardubiquitywhenMicrosoftmakesAzureavailableandGooglelaunchesitsGoogleCloudStorage(theGoogleCloudPlatformwouldcomeonlineaboutayearlater).

+

2010–WorldwideIPtrafficexceeds20exabytes(20billiongigabytes)permonthInternetprotocol(IP)trafficisaidedbygrowingadoptionofbroadband,particularlyintheUnitedStates,whereadoptionreaches65percent,accordingtoCisco,whichreportsthismonthlyfigureandtheannualfigureof242exabytes.

11 Anexecutive’sguidetoAI

2012–NumberofFacebookusershitsonebillion

Theamountofdataprocessedbythecompany’ssystemssoarspast500terabytes.

2012–Deep-learningsystemwinsrenownedimage-classificationcontestforthefirsttime

GeoffreyHinton’steamwinsImageNet’simage-classificationcompetitionbyalarge

margin,withanerrorrateof15.3percentversusthesecond-besterrorrateof26.2percent,usingaconvolutionalneuralnetwork(CNN).Hinton’steamtraineditsCNNon1.2millionimagesusing

2011–IBMWatsonbeatsJeopardy!

+

+

IBM’squestionansweringsystem,Watson,defeatsthetwogreatestJeopardy!champions,BradRutterandKenJennings,byasignificantmargin.IBMWatsonusestenracksofIBMPower750serverscapableof80teraFLOPS(that’s

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論