版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Anexecutive’sguidetoAI
PAGE
1
Anexecutive’sguidetoAI
Stayingaheadintheacceleratingartificial-intelligenceracerequiresexecutivestomakenimble,informeddecisionsaboutwhereandhowtoemployAIintheirbusiness.Onewaytopreparetoactquickly:knowtheAIessentialspresentedinthisguide.
Artificialintelligence:Adefinition
AIistypicallydefinedastheabilityofamachinetoperformcognitivefunctionsweassociatewithhumanminds,suchasperceiving,reasoning,learning,andproblemsolving.ExamplesoftechnologiesthatenableAItosolvebusinessproblemsareroboticsandautonomousvehicles,computervision,language,virtualagents,andmachinelearning.
Machinelearning:Adefinition
MostrecentadvancesinAIhavebeenachievedbyapplyingmachinelearningtoverylargedatasets.Machine-learningalgorithmsdetectpatternsandlearnhowtomakepredictionsandrecommendationsbyprocessingdataandexperiences,ratherthanbyreceivingexplicitprogramminginstruction.Thealgorithmsalsoadaptinresponsetonewdataandexperiencestoimproveefficacyovertime.
Understandingthemajortypesofmachinelearning
Supervisedlearning
Whatitis
Analgorithmusestrainingdataandfeedbackfromhumanstolearntherelationshipofgiveninputstoagivenoutput(eg,howtheinputs“timeofyear”and“interestrates”predicthousingprices)
Whentouseit
Youknowhowtoclassifytheinputdataandthetypeofbehavioryouwanttopredict,butyouneedthealgorithmtocalculateitforyouonnewdata
Howitworks
Ahumanlabelseveryelementoftheinputdata(eg,inthecaseof
predictinghousingprices,labelstheinputdataas“timeofyear,”“interestrates,”etc)anddefinestheoutputvariable(eg,housingprices)
Thealgorithmistrainedonthedatatofindtheconnectionbetweentheinputvariablesandtheoutput
Oncetrainingiscomplete—typicallywhenthealgorithmissufficientlyaccurate—thealgorithmisappliedtonewdata
Unsupervisedlearning
Analgorithmexploresinputdatawithoutbeinggiven
anexplicitoutputvariable(eg,explorescustomerdemographicdatatoidentifypatterns)
Youdonotknowhowtoclassifythedata,andyouwantthealgorithmtofindpatternsandclassifythedataforyou
Thealgorithmreceivesunlabeleddata(eg,asetofdatadescribingcustomerjourneysonawebsite)
Itinfersastructurefromthedata
Thealgorithmidentifiesgroupsofdatathatexhibitsimilarbehavior(eg,formsclusters
ofcustomersthatexhibitsimilarbuyingbehaviors)
Reinforcementlearning
Analgorithmlearnstoperformatasksimplybytryingto
maximizerewardsitreceivesforitsactions(eg,maximizespointsitreceivesforincreasingreturnsofaninvestmentportfolio)
Youdon’thavealotoftrainingdata;youcannotclearlydefinetheidealendstate;ortheonlywaytolearnabouttheenvironmentistointeractwithit
Thealgorithmtakesanactionontheenvironment(eg,makesatradeinafinancialportfolio)
Itreceivesarewardiftheactionbringsthemachineastepclosertomaximizingthetotalrewardsavailable(eg,thehighesttotalreturnontheportfolio)
Thealgorithmoptimizesforthebestseriesofactionsbycorrectingitselfovertime
Supervisedlearning:Algorithmsandsamplebusinessusecases1
Algorithms Samplebusinessusecases
Linearregression
Highlyinterpretable,standardmethodformodel-ingthepastrelationshipbetweenindependentinputvariablesanddependentoutputvariables(whichcanhaveaninfinitenumberofvalues)tohelppredictfuturevaluesoftheoutputvariables
Logisticregression
Extensionoflinearregressionthat’susedforclassifationtasks,meaningtheoutputvariableisbinary(eg,onlyblackorwhite)ratherthan
continuous(eg,aninfinitelistofpotentialcolors)
Linear/quadraticdiscriminantanalysisUpgradesalogisticregressiontodealwithnonlinearproblems—thoseinwhichchangestothevalueofinputvariablesdonotresultinproportionalchangestotheoutputvariables.
Understandproduct-salesdriverssuchascompetitionprices,distribution,advertisement,etc
Optimizepricepointsandestimateproduct-priceelasticities
Classifycustomersbasedonhowlikelytheyaretorepayaloan
Predictifaskinlesionisbenignormalignantbasedonitscharacteristics(size,shape,color,etc)
Predictclientchurn
Predictasaleslead’slikelihoodofclosing
Decisiontree
Highlyinterpretableclassificationorregressionmodelthatsplitsdata-featurevaluesintobranchesatdecisionnodes(eg,ifafeatureisacolor,eachpossiblecolorbecomesanewbranch)untilafinaldecisionoutputismade
Provideadecisionframeworkforhiringnewemployees
Understandproductattributesthatmakeaproductmostlikelytobepurchased
NaiveBayes
ClassificationtechniquethatappliesBayestheorem,whichallowstheprobabilityofaneventtobecalculatedbasedonknowledgeoffactorsthatmightaffectthatevent(eg,ifanemailcontainstheword“money,”thentheprobabilityofitbeingspamishigh)
Analyzesentimenttoassessproductperceptioninthemarket
Createclassifierstofilterspamemails
1We’velistedsomeofthemostcommonlyusedalgorithmstoday—thislistisnotintendedtobeexhaustive.Additionally,anumberofdifferentmodelscanoftensolvethesamebusinessproblem.Conversely,thenatureofanavailabledatasetoftenprecludesusingamodeltypicallyemployedtosolveaparticularproblem.Forthesereasons,thesamplebusinessusecasesaremeantonlytobeillustrativeofthetypesofproblemsthesemodelscansolve.
Algorithms Samplebusinessusecases
Supportvectormachine
Atechniquethat’stypicallyusedforclassificationbutcanbetransformedtoperformregression.Itdrawsanoptimaldivisionbetweenclasses(aswideaspossible).Italsocanbequicklygeneralizedtosolvenonlinearproblems
Randomforest
Classificationorregressionmodelthatimprovestheaccuracyofasimpledecisiontreebygeneratingmultipledecisiontreesandtakingamajorityvoteofthemtopredicttheoutput,whichisacontinuousvariable(eg,age)foraregressionproblemandadiscretevariable(eg,eitherblack,white,orred)forclassification
Predicthowmanypatientsahospitalwillneedtoserveinatimeperiod
Predicthowlikelysomeoneistoclickonanonlinead
Predictcallvolumeincallcentersforstaffingdecisions
Predictpowerusageinanelectrical-distributiongrid
AdaBoost
Classificationorregressiontechniquethatusesamultitudeofmodelstocomeupwithadecisionbutweighsthembasedontheiraccuracyinpredictingtheoutcome
Detectfraudulentactivityincredit-cardtransactions.Achievesloweraccuracythandeeplearning
Simple,low-costwaytoclassifyimages(eg,recognizelandusagefromsatelliteimagesforclimate-changemodels).Achievesloweraccuracythandeeplearning
Gradient-boostingtrees
Classificationorregressiontechniquethatgeneratesdecisiontreessequentially,whereeachtreefocusesoncorrectingtheerrorscomingfromtheprevioustreemodel.Thefinaloutputisacombinationoftheresultsfromalltrees
Forecastproductdemandandinventorylevels
Predictthepriceofcarsbasedontheircharacteristics(eg,ageandmileage)
Simpleneuralnetwork
Modelinwhichartificialneurons(software-basedcalculators)makeupthreelayers(aninputlayer,ahiddenlayerwherecalculationstakeplace,andanoutputlayer)thatcanbeusedtoclassifydataorfindtherelationshipbetweenvariablesinregressionproblems
Predicttheprobabilitythatapatientjoinsahealthcareprogram
Predictwhetherregistereduserswillbe
willingornottopayaparticularpriceforaproduct
Unsupervisedlearning:Algorithmsandsamplebusinessusecases2
Algorithms Samplebusinessusecases
K-meansclustering
Putsdataintoanumberofgroups(k)thateachcontaindatawithsimilarcharacteristics(asdeterminedbythemodel,notinadvancebyhumans)
Gaussianmixturemodel
Ageneralizationofk-meansclusteringthatprovidesmoreflexibilityinthesizeandshapeofgroups(clusters)
Hierarchicalclustering
Splitsoraggregatesclustersalongahierarchicaltreetoformaclassificationsystem
Segmentcustomersintogroupsbydistinctcharateristics(eg,agegroup)—forinstance,tobetterassignmarketingcampaignsorpreventchurn
Segmentcustomerstobetterassignmarketingcampaignsusingless-distinctcustomercharacteristics(eg,productpreferences)
Segmentemployeesbasedonlikelihoodofattrition
Clusterloyalty-cardcustomersintoprogressivelymoremicrosegmentedgroups
Informproductusage/developmentbygroupingcustomersmentioningkeywordsinsocial-mediadata
Recommendersystem
Oftenusesclusterbehaviorpredictiontoidentifytheimportantdatanecessaryformakingarecommendation
Recommendwhatmoviesconsumersshouldviewbasedonpreferencesofothercustomerswithsimilarattributes
Recommendnewsarticlesareadermightwanttoreadbasedonthearticlesheorheisreading
2We’velistedsomeofthemostcommonlyusedalgorithmstoday—thislistisnotintendedtobeexhaustive.Additionally,anumberofdifferentmodelscanoftensolvethesamebusinessproblem.Conversely,thenatureofanavailabledatasetoftenprecludesusingamodeltypicallyemployedtosolveaparticularproblem.Forthesereasons,thesamplebusinessusecasesaremeantonlytobeillustrativeofthetypesofproblemsthesemodelscansolve.
Anexecutive’sguidetoAI
PAGE
6
Reinforcementlearning:Samplebusinessusecases3
Optimizethetradingstrategyforanoptions-tradingportfolio
Balancetheloadofelectricitygridsinvaryingdemandcycles
Stockandpickinventoryusingrobots
Optimizethedrivingbehaviorofself-drivingcars
Optimizepricinginrealtimeforanonlineauctionofaproductwithlimitedsupply
Deeplearning:Adefinition
Deeplearningisatypeofmachinelearningthatcanprocessawiderrangeofdataresources,requireslessdatapreprocessingbyhumans,andcanoftenproducemoreaccurateresultsthantraditionalmachine-learningapproaches.Indeeplearning,interconnectedlayersofsoftware-basedcalculatorsknownas“neurons”formaneuralnetwork.Thenetworkcaningestvastamountsofinputdataandprocessthemthroughmultiplelayersthatlearnincreasinglycomplexfeaturesofthedataateachlayer.Thenetworkcanthenmakeadeterminationaboutthedata,learnifitsdeterminationiscorrect,andusewhatithaslearnedtomakedeterminationsaboutnewdata.Forexample,onceitlearnswhatanobjectlookslike,itcanrecognizetheobjectinanewimage.
3Thesamplebusinessusecasesaremeantonlytobeillustrativeofthetypesofproblemsthesemodelscansolve.
Understandingthemajordeeplearningmodelsandtheirbusinessusecases4
Convolutionalneuralnetwork Recurrentneuralnetwork
Whatitis
Amultilayeredneuralnetworkwithaspecialarchitecturedesignedtoextractincreasinglycomplexfeaturesofthedataateachlayertodeterminetheoutput
Whentouseit
Whenyouhaveanunstructureddataset(eg,images)andyouneedtoinferinformationfromit
Amultilayeredneuralnetworkthatcanstoreinformationincontextnodes,allowingittolearndatasequencesandoutputanumberoranothersequence
Whenyouareworkingwithtime-seriesdataorsequences(eg,audiorecordingsortext)
4Thesamplebusinessusecasesaremeantonlytobeillustrativeofthetypesofproblemsthesemodelscansolve.
Convolutionalneuralnetwork Recurrentneuralnetwork
Howitworks
Processinganimage
Theconvolutionalneuralnetwork(CNN)receivesanimage—forexample,oftheletter“A”—thatitprocessesasacollectionofpixels
Inthehidden,innerlayersofthemodel,itidentifiesuniquefeatures,forexample,theindividuallinesthatmakeup“A”
TheCNNcannowclassifyadifferentimageastheletter“A”ifitfindsinittheuniquefeaturespreviouslyidentifiedasmakinguptheletter
Predictingthenextwordinthesentence“Areyoufree ?”
Arecurrentneuralnetwork(RNN)neuronreceivesacommandthatindicatesthestartofasentence
Theneuronreceivestheword“Are”andthenoutputsavectorofnumbersthatfeedsbackintotheneurontohelpit“remember”thatitreceived“Are”(andthatitreceiveditfirst).Thesameprocessoccurswhenitreceives“you”and“free,”
withthestateoftheneuronupdatinguponreceivingeachword
Afterreceiving“free,”theneuronassignsaprobabilitytoeverywordintheEnglishvocabularythatcouldcompletethesentence.Iftrainedwell,theRNNwillassigntheword“tomorrow”oneofthehighestprobabilitiesandwillchooseittocompletethesentence
Businessusecases
Diagnosehealthdiseasesfrommedicalscans
Detectacompanylogoinsocialmediatobetterunderstandjointmarketing
opportunities(eg,pairingofbrandsinoneproduct)
Understandcustomerbrandperceptionandusagethroughimages
Detectdefectiveproductsonaproductionlinethroughimages
Generateanalystreportsforsecuritiestraders
Providelanguagetranslation
Trackvisualchangestoanareaafteradisastertoassesspotentialdamageclaims(inconjunctionwithCNNs)
Assessthelikelihoodthatacredit-cardtransactionisfraudulent
Generatecaptionsforimages
Powerchatbotsthatcanaddressmorenuancedcustomerneedsandinquiries
Timeline:WhyAInow?
Aconvergenceofalgorithmicadvances,dataproliferation,andtremendousincreasesincomputingpowerandstoragehaspropelledAIfromhypetoreality.
Algorithmicadvancements
+
1805–Legendrelaysthegroundworkformachinelearning
FrenchmathematicianAdrien-MarieLegendrepublishestheleastsquaremethodforregression,whichheusedtodetermine,fromastronomicalobservations,theorbitsofbodiesaroundthesun.Althoughthismethodwasdevelopedasastatisticalframework,itwouldprovidethebasisformanyoftoday’smachine-learningmodels.
+
1958–Rosenblattdevelopsthefirstself-learningalgorithm
AmericanpsychologistandcomputerscientistFrankRosenblattcreatestheperceptronalgorithm,anearlytypeofartificialneuralnetwork(ANN),whichstandsasthefirstalgorithmicmodelthatcouldlearnonitsown.AmericancomputerscientistArthurSamuelwouldcointheterm“machinelearning”thefollowingyearforthesetypesofself-learningmodels(aswellasdevelopagroundbreakingcheckersprogramseenasanearlysuccessinAI).
+
1965–Birthofdeeplearning
UkrainianmathematicianAlexeyGrigorevichIvakhnenkodevelopsthefirstgeneralworkinglearningalgorithmsforsupervisedmultilayerartificialneuralnetworks(ANNs),inwhichseveralANNsarestackedontopofoneanotherandtheoutputofoneANNlayerfeedsintothenext.Thearchitectureisverysimilartotoday’sdeep-learningarchitectures.
+
1986–Backpropagationtakeshold
AmericanpsychologistDavidRumelhart,
BritishcognitivepsychologistandcomputerscientistGeoffreyHinton,andAmericancomputerscientistRonaldWilliamspublishonbackpropagation,popularizingthis
keytechniquefortrainingartificialneuralnetworks(ANNs)thatwasoriginallyproposedbyAmericanscientistPaulWerbosin1982.
BackpropagationallowstheANNtooptimizeitselfwithouthumanintervention(inthiscase,itfoundfeaturesinfamily-treedatathatweren’tobviousorprovidedtothealgorithminadvance).Still,lackofcomputationalpower
andthemassiveamountsofdataneededtotrainthesemultilayerednetworkspreventANNsleveragingbackpropagationfrombeingusedwidely
Explosionofdata
+ +
1991–OpeningoftheWorldWideWeb
TheEuropeanOrganizationforNuclearResearch(CERN)beginsopeninguptheWorldWideWebtothepublic.
Early2000s–BroadbandadoptionbeginsamonghomeInternetusers
BroadbandallowsusersaccesstoincreasinglyspeedyInternetconnections,upfromthepaltry
56kbpsavailablefordownloadingthroughdial-upinthelate1990s.Today,availablebroadbandspeedscansurpass100mbps
(1mbps=1,000kbps).Bandwidth-hungryapplicationslike
YouTubecouldnothavebecomecommerciallyviablewithouttheadventofbroadband.
Exponentialincreasesincomputingpowerandstorage
+
1965–Moorerecognizesexponentialgrowthinchippower
IntelcofounderGordonMoorenoticesthatthenumberoftransistorspersquareinchonintegratedcircuitshasdoubledeveryyearsincetheirinvention.HisobservationbecomesMoore’slaw,whichpredictsthetrendwillcontinueintotheforeseeablefuture(althoughitlaterprovestodosoroughlyevery18months).Atthetime,state-of-the-artcomputationalspeedisintheorderofthreemillionfloating-pointoperationspersecond(FLOPS).
+
1997–IncreaseincomputingpowerdrivesIBM’sDeepBlue
victoryoverGarryKasparovDeepBlue’ssuccessagainsttheworldchesschampionlargelystemsfrommasterfulengineeringandthetremendouspowercomputerspossessatthattime.DeepBlue’scomputerachievesaround11gigaFLOPS(11billionFLOPS).
+
1999–MorecomputingpowerforAIalgorithmsarrives…butnoonerealizesityet
NvidiareleasestheGeForce256graphicscard,marketedastheworld’sfirsttruegraphicsprocessingunit(GPU).Thetechnologywilllaterprove
fundamentaltodeeplearningbyperformingcomputationsmuchfasterthancomputerprocessingunits(CPUs).
9 Anexecutive’sguidetoAI
+
1989–BirthofCNNsforimagerecognitionFrenchcomputerscientistYannLeCun,nowdirectorofAIresearchforFacebook,andotherspublishapaperdescribinghowatypeofartificialneuralnetworkcalledaconvolutionalneuralnetwork(CNN)iswellsuitedfor
shape-recognitiontasks.LeCunandteamapplyCNNstothetaskofrecognizinghandwrittencharacters,withtheinitialgoalofbuildingautomaticmail-sortingmachines.Today,CNNsarethestate-of-the-artmodelforimagerecognitionandclassification.
+
+
1992–UpgradedSVMsprovideearlynatural-language-processingsolutionComputerengineersBernhardE.Boser(Swiss),IsabelleM.Guyon(French),andRussianmathematicianVladimirN.Vapnikdiscoverthatalgorithmicmodelscalledsupportvectormachines(SVMs)canbeeasilyupgradedtodealwithnonlinearproblemsbyusingatechniquecalledkerneltrick,leadingtowidespreadusageofSVMsinmanynatural-language-processingproblems,suchasclassifyingsentimentandunderstandinghumanspeech.
1997–RNNsgeta“memory,”positioningthemtoadvancespeechtotext
+
+
In1991,GermancomputerscientistSeppHochreitershowedthataspecialtypeofartificialneuralnetwork(ANN)calledarecurrentneuralnetwork(RNN)canbeusefulinsequencingtasks(speechtotext,forexample)ifitcouldrememberthebehaviorofpartsequencesbetter.In1997,HochreiterandfellowcomputerscientistJürgenSchmidhubersolvetheproblembydevelopinglongshort-termmemory(LSTM).Today,RNNswithLSTMareusedinmanymajorspeech-recognitionapplications.
+
1998–BrinandPagepublishPageRankalgorithm
+
+
Thealgorithm,whichrankswebpageshigherthemoreotherwebpageslinktothem,formstheinitialprototypeofGoogle’ssearchengine.ThisbrainchildofGooglefoundersSergeyBrinandLarryPagerevolutionizesInternetsearches,openingthedoortothecreationandconsumptionofmorecontentanddataontheWorldWideWeb.Thealgorithmwouldalso
goontobecomeoneofthemostimportantforbusinessesastheyvieforattentiononanincreasinglysprawlingInternet.
2004–Facebookdebuts
HarvardstudentMarkZuckerbergandteamlaunch“Thefacebook,”asitwasoriginallydubbed.Bytheendof2005,thenumberofdata-generating
Facebookusersapproachessixmillion.
2004–Web2.0hitsitsstride,launchingtheeraofuser-generateddata
Web2.0referstotheshiftingoftheInternetparadigmfrompassivecontentviewingtointeractiveandcollaborativecontentcreation,socialmedia,blogs,video,andotherchannels.PublishersTimO’ReillyandDaleDoughertypopularize
theterm,thoughitwascoinedbydesignerDarcyDiNucciin1999.
2005–YouTubedebuts
Withinabout18months,thesitewouldserveupalmost100millionviewsperday.
2005–NumberofInternetusersworldwidepassesone-billionmark
2002—Amazonbringscloudstorageandcomputingtothemasses
+
AmazonlaunchesitsAmazonWebServices,offeringcloud-basedstorageandcomputingpowertousers.Cloudcomputingwouldcometorevolutionizeanddemocratizedatastorageandcomputation,givingmillions
ofusersaccesstopowerfulITsystems—previouslyonlyavailabletobigtechcompanies—atarelativelylowcost.
+
2004–DeanandGhemawatintroducetheMapReducealgorithmtocopewithdataexplosion
WiththeWorldWideWebtakingoff,Googleseeksoutnovel
ideastodealwiththeresultingproliferationofdata.ComputerscientistJeffDean(currentheadofGoogleBrain)andGooglesoftwareengineerSanjayGhemawatdevelopMapReducetodealwithimmenseamountsofdatabyparallelizingprocessesacross
largedatasetsusingasubstantialnumberofcomputers.
+
2005–Costofonegigabyteofdiskstoragedropsto$0.79,from$277tenyearsearlierAndthepriceofDRAM,atypeofrandom-accessmemory(RAM)commonlyusedinPCs,dropsto
$158pergigabyte,from$31,633in1995.
10 Anexecutive’sguidetoAI
+
2006–Hintonreenergizestheuseofdeep-learningmodelsTospeedthetrainingofdeep-
learningmodels,GeoffreyHintondevelopsawaytopretrainthemwithadeep-beliefnetwork(aclassofneuralnetwork)beforeemployingbackpropagation.Whilehismethodwouldbecomeobsoletewhencomputationalpowerincreased
toalevelthatallowedforefficientdeep-learning-modeltraining,Hinton’sworkpopularizedtheuseofdeeplearningworldwide—andmanycredithimwithcoiningthephrase“deeplearning.”
2007–IntroductionoftheiPhonepropelssmartphonerevolution—andampsupdatageneration
+
ApplecofounderandCEOSteveJobsintroducestheiPhoneinJanuary2007.Thetotalnumberofsmartphonessoldin2007reachesabout122million.Theeraofaround-the-clockconsumptionandcreationofdataandcontentbysmartphoneusersbegins.
2006–CuttingandCafarellaintroduceHadooptostoreandprocessmassiveamountsofdata
+
InspiredbyGoogle’sMapReduce,computerscientistsDougCuttingandMikeCafarelladeveloptheHadoopsoftwaretostoreandprocessenormousdatasets.
Yahoousesitfirst,todealwiththeexplosionofdatacomingfromindexingwebpagesandonlinedata.
2009–UCBerkeleyintroducesSparktohandlebigdatamodelsmoreefficientlyDevelopedbyRomanian-CanadiancomputerscientistMateiZahariaatUCBerkeley’sAMPLab,SparkstreamshugeamountsofdataleveragingRAM,makingitmuchfasteratprocessingdatathansoftwarethatmustread/writeonharddrives.Itrevolutionizestheabilitytoupdatebigdataandperformanalyticsinrealtime.
++
2009–NgusesGPUstotraindeep-learningmodelsmoreeffectively
AmericancomputerscientistAndrewNgandhisteamatStanfordUniversityshowthattrainingdeep-beliefnetworkswith100millionparametersonGPUsismorethan70timesfasterthandoingsoonCPUs,afindingthatwouldreducetrainingthatoncetookweekstoonlyoneday.
2010–Numberofsmartphonessoldintheyearnears300million
+
Thisrepresentsanearly2.5timesincreaseoverthenumbersoldin2007.
+
2010–MicrosoftandGoogleintroducetheirclouds
CloudcomputingandstoragetakeanothersteptowardubiquitywhenMicrosoftmakesAzureavailableandGooglelaunchesitsGoogleCloudStorage(theGoogleCloudPlatformwouldcomeonlineaboutayearlater).
+
2010–WorldwideIPtrafficexceeds20exabytes(20billiongigabytes)permonthInternetprotocol(IP)trafficisaidedbygrowingadoptionofbroadband,particularlyintheUnitedStates,whereadoptionreaches65percent,accordingtoCisco,whichreportsthismonthlyfigureandtheannualfigureof242exabytes.
11 Anexecutive’sguidetoAI
2012–NumberofFacebookusershitsonebillion
Theamountofdataprocessedbythecompany’ssystemssoarspast500terabytes.
2012–Deep-learningsystemwinsrenownedimage-classificationcontestforthefirsttime
GeoffreyHinton’steamwinsImageNet’simage-classificationcompetitionbyalarge
margin,withanerrorrateof15.3percentversusthesecond-besterrorrateof26.2percent,usingaconvolutionalneuralnetwork(CNN).Hinton’steamtraineditsCNNon1.2millionimagesusing
2011–IBMWatsonbeatsJeopardy!
+
+
IBM’squestionansweringsystem,Watson,defeatsthetwogreatestJeopardy!champions,BradRutterandKenJennings,byasignificantmargin.IBMWatsonusestenracksofIBMPower750serverscapableof80teraFLOPS(that’s
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課程設計小姐姐壁紙
- 顏色派對課程設計思路
- 邏輯電平測試課程設計
- 紅色文物探究課程設計
- 電工原理課程設計
- 除法器電路課程設計
- 2025年中國增強聚丙烯水噴射真空泵市場調(diào)查研究報告
- 2025年中國三件套不粘煎鍋市場調(diào)查研究報告
- 工程分包安全事故合同模版
- 2024個人租房合同簡單版
- 春節(jié)文化常識單選題100道及答案
- 12123交管學法減分考試題及答案
- 2024年杭州師范大學附屬醫(yī)院招聘高層次緊缺專業(yè)人才筆試真題
- 制造業(yè)BCM業(yè)務連續(xù)性管理培訓
- 商場停車場管理制度
- 24年追覓在線測評28題及答案
- TGDNAS 043-2024 成人靜脈中等長度導管置管技術(shù)
- 《陸上風電場工程概算定額》NBT 31010-2019
- 皮帶輸送機工程施工電氣安裝措施要點
- 藥房(冰柜)溫濕度表
- QJ903.9A-1995航天產(chǎn)品工藝文件管理制度管理用工藝文件編制規(guī)則
評論
0/150
提交評論