北京理工大附屬中學(xué)2024年中考數(shù)學(xué)仿真試卷含解析_第1頁
北京理工大附屬中學(xué)2024年中考數(shù)學(xué)仿真試卷含解析_第2頁
北京理工大附屬中學(xué)2024年中考數(shù)學(xué)仿真試卷含解析_第3頁
北京理工大附屬中學(xué)2024年中考數(shù)學(xué)仿真試卷含解析_第4頁
北京理工大附屬中學(xué)2024年中考數(shù)學(xué)仿真試卷含解析_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北京理工大附屬中學(xué)2024年中考數(shù)學(xué)仿真試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,是由一個圓柱體和一個長方體組成的幾何體,其主視圖是()A. B. C. D.2.的化簡結(jié)果為A.3 B. C. D.93.在平面直角坐標(biāo)系中,點A的坐標(biāo)是(﹣1,0),點B的坐標(biāo)是(3,0),在y軸的正半軸上取一點C,使A、B、C三點確定一個圓,且使AB為圓的直徑,則點C的坐標(biāo)是()A.(0,) B.(,0) C.(0,2) D.(2,0)4.一個幾何體的三視圖如圖所示,這個幾何體是()A.三菱柱 B.三棱錐 C.長方體 D.圓柱體5.如圖,這是一個幾何體的三視圖,根據(jù)圖中所示數(shù)據(jù)計算這個幾何體的側(cè)面積為()A.9π B.10π C.11π D.12π6.在2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是()A.平均數(shù)為160 B.中位數(shù)為158 C.眾數(shù)為158 D.方差為20.37.下列圖形是軸對稱圖形的有()A.2個 B.3個 C.4個 D.5個8.一個半徑為24的扇形的弧長等于20π,則這個扇形的圓心角是()A.120° B.135° C.150° D.165°9.實數(shù)4的倒數(shù)是()A.4 B. C.﹣4 D.﹣10.《九章算術(shù)》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1,圖2所示,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應(yīng)的常數(shù)項.把圖1表示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是.類似地,圖2所示的算籌圖我們可以表述為()A. B. C. D.11.如圖,一次函數(shù)y1=x+b與一次函數(shù)y2=kx+4的圖象交于點P(1,3),則關(guān)于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<112.如圖,△ABC是⊙O的內(nèi)接三角形,∠BOC=120°,則∠A等于()A.50° B.60° C.55° D.65°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在中,于點,于點,為邊的中點,連接,則下列結(jié)論:①,②,③為等邊三角形,④當(dāng)時,.請將正確結(jié)論的序號填在橫線上__.14.如圖,點P是邊長為2的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當(dāng)點P在BD上運動時(不包括B、D兩點),以下結(jié)論:①MF=MC;②AH⊥EF;③AP2=PM?PH;④EF的最小值是.其中正確的是________.(把你認(rèn)為正確結(jié)論的序號都填上)15.若不等式組的解集是﹣1<x≤1,則a=_____,b=_____.16.對于任意實數(shù)a、b,定義一種運算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.請根據(jù)上述的定義解決問題:若不等式3※x<1,則不等式的正整數(shù)解是_____.17.已知ab=﹣2,a﹣b=3,則a3b﹣2a2b2+ab3的值為_______.18.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在中,,且,,為的中點,于點,連結(jié),.(1)求證:;(2)當(dāng)為何值時,的值最大?并求此時的值.20.(6分)九(1)班同學(xué)分成甲、乙兩組,開展“四個城市建設(shè)”知識競賽,滿分得5分,得分均為整數(shù).小馬虎根據(jù)競賽成績,繪制了如圖所示的統(tǒng)計圖.經(jīng)確認(rèn),扇形統(tǒng)計圖是正確的,條形統(tǒng)計圖也只有乙組成績統(tǒng)計有一處錯誤.(1)指出條形統(tǒng)計圖中存在的錯誤,并求出正確值;(2)若成績達(dá)到3分及以上為合格,該校九年級有800名學(xué)生,請估計成績未達(dá)到合格的有多少名?(3)九(1)班張明、李剛兩位成績優(yōu)秀的同學(xué)被選中參加市里組織的“四個城市建設(shè)”知識競賽.預(yù)賽分為A、B、C、D四組進(jìn)行,選手由抽簽確定.張明、李剛兩名同學(xué)恰好分在同一組的概率是多少?21.(6分)如圖,在平面直角坐標(biāo)系中有三點(1,2),(3,1),(-2,-1),其中有兩點同時在反比例函數(shù)的圖象上,將這兩點分別記為A,B,另一點記為C,(1)求出的值;(2)求直線AB對應(yīng)的一次函數(shù)的表達(dá)式;(3)設(shè)點C關(guān)于直線AB的對稱點為D,P是軸上的一個動點,直接寫出PC+PD的最小值(不必說明理由).22.(8分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.23.(8分)如圖,在△ABC中,∠ABC=90°,D,E分別為AB,AC的中點,延長DE到點F,使EF=2DE.(1)求證:四邊形BCFE是平行四邊形;(2)當(dāng)∠ACB=60°時,求證:四邊形BCFE是菱形.24.(10分)綜合與探究如圖,拋物線y=﹣與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,直線l經(jīng)過B,C兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉(zhuǎn)90°得到線段MD,連接CD,BD.設(shè)點M運動的時間為t(t>0),請解答下列問題:(1)求點A的坐標(biāo)與直線l的表達(dá)式;(2)①直接寫出點D的坐標(biāo)(用含t的式子表示),并求點D落在直線l上時的t的值;②求點M運動的過程中線段CD長度的最小值;(3)在點M運動的過程中,在直線l上是否存在點P,使得△BDP是等邊三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.25.(10分)十八大報告首次提出建設(shè)生態(tài)文明,建設(shè)美麗中國.十九大報告再次明確,到2035年美麗中國目標(biāo)基本實現(xiàn).森林是人類生存發(fā)展的重要生態(tài)保障,提高森林的數(shù)量和質(zhì)量對生態(tài)文明建設(shè)非常關(guān)鍵.截止到2013年,我國已經(jīng)進(jìn)行了八次森林資源清查,其中全國和北京的森林面積和森林覆蓋率情況如下:表1全國森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)122001150125001340015894.0917490.9219545.2220768.73森林覆蓋率12.7%12%12.98%13.92%16.55%18.21%20.36%21.63%表2北京森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)33.7437.8852.0558.81森林覆蓋率11.2%8.1%12.08%14.99%18.93%21.26%31.72%35.84%(以上數(shù)據(jù)來源于中國林業(yè)網(wǎng))請根據(jù)以上信息解答下列問題:(1)從第次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;(2)補全以下北京森林覆蓋率折線統(tǒng)計圖,并在圖中標(biāo)明相應(yīng)數(shù)據(jù);(3)第八次清查的全國森林面積20768.73(萬公頃)記為a,全國森林覆蓋率21.63%記為b,到2018年第九次森林資源清查時,如果全國森林覆蓋率達(dá)到27.15%,那么全國森林面積可以達(dá)到萬公頃(用含a和b的式子表示).26.(12分)某商場,為了吸引顧客,在“白色情人節(jié)”當(dāng)天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機會.已知在搖獎機內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎?wù)弑仨殢膿u獎機內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色(如表)決定送禮金券的多少.球兩紅一紅一白兩白禮金券(元)182418(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.(2)如果一名顧客當(dāng)天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.27.(12分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°得線段PQ.(1)當(dāng)點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當(dāng)AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大??;(3)在點P運動中,當(dāng)以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結(jié)果.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據(jù)立體圖形可得:主視圖的上面和下面各為一個矩形,且下面矩形的長比上面矩形的長要長一點,兩個矩形的寬一樣大?。键c:三視圖.2、A【解析】試題分析:根據(jù)二次根式的計算化簡可得:.故選A.考點:二次根式的化簡3、A【解析】

直接根據(jù)△AOC∽△COB得出OC2=OA?OB,即可求出OC的長,即可得出C點坐標(biāo).【詳解】如圖,連結(jié)AC,CB.

依△AOC∽△COB的結(jié)論可得:OC2=OAOB,即OC2=1×3=3,解得:OC=或?(負(fù)數(shù)舍去),故C點的坐標(biāo)為(0,).故答案選:A.【點睛】本題考查了坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是熟練的掌握坐標(biāo)與圖形的性質(zhì).4、A【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由于左視圖和俯視圖為長方形可得此幾何體為柱體,由主視圖為三角形可得為三棱柱.故選:B.【點睛】此題主要考查了學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.5、B【解析】【分析】由三視圖可判斷出幾何體的形狀,進(jìn)而利用圓錐的側(cè)面積公式求出答案.【詳解】由題意可得此幾何體是圓錐,底面圓的半徑為:2,母線長為:5,故這個幾何體的側(cè)面積為:π×2×5=10π,故選B.【點睛】本題考查了由三視圖判斷幾何體的形狀以及圓錐側(cè)面積求法,正確得出幾何體的形狀是解題關(guān)鍵.6、D【解析】解:A.平均數(shù)為(158+160+154+158+170)÷5=160,正確,故本選項不符合題意;B.按照從小到大的順序排列為154,158,158,160,170,位于中間位置的數(shù)為158,故中位數(shù)為158,正確,故本選項不符合題意;C.?dāng)?shù)據(jù)158出現(xiàn)了2次,次數(shù)最多,故眾數(shù)為158,正確,故本選項不符合題意;D.這組數(shù)據(jù)的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,錯誤,故本選項符合題意.故選D.點睛:本題考查了眾數(shù)、平均數(shù)、中位數(shù)及方差,解題的關(guān)鍵是掌握它們的定義,難度不大.7、C【解析】試題分析:根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據(jù)此對圖中的圖形進(jìn)行判斷.解:圖(1)有一條對稱軸,是軸對稱圖形,符合題意;圖(2)不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;圖(3)有二條對稱軸,是軸對稱圖形,符合題意;圖(3)有五條對稱軸,是軸對稱圖形,符合題意;圖(3)有一條對稱軸,是軸對稱圖形,符合題意.故軸對稱圖形有4個.故選C.考點:軸對稱圖形.8、C【解析】

這個扇形的圓心角的度數(shù)為n°,根據(jù)弧長公式得到20π=,然后解方程即可.【詳解】解:設(shè)這個扇形的圓心角的度數(shù)為n°,根據(jù)題意得20π=,解得n=150,即這個扇形的圓心角為150°.故選C.【點睛】本題考查了弧長公式:L=(n為扇形的圓心角的度數(shù),R為扇形所在圓的半徑).9、B【解析】

根據(jù)互為倒數(shù)的兩個數(shù)的乘積是1,求出實數(shù)4的倒數(shù)是多少即可.【詳解】解:實數(shù)4的倒數(shù)是:1÷4=.故選:B.【點睛】此題主要考查了一個數(shù)的倒數(shù)的求法,要熟練掌握,解答此題的關(guān)鍵是要明確:互為倒數(shù)的兩個數(shù)的乘積是1.10、A【解析】

根據(jù)圖形,結(jié)合題目所給的運算法則列出方程組.【詳解】圖2所示的算籌圖我們可以表述為:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列出方程組.11、C【解析】試題分析:當(dāng)x>1時,x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點:一次函數(shù)與一元一次不等式.12、B【解析】

由圓周角定理即可解答.【詳解】∵△ABC是⊙O的內(nèi)接三角形,∴∠A=∠BOC,而∠BOC=120°,∴∠A=60°.故選B.【點睛】本題考查了圓周角定理,熟練運用圓周角定理是解決問題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、①③④【解析】

①根據(jù)直角三角形斜邊上的中線等于斜邊的一半可判斷①;②先證明△ABM∽△ACN,再根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;③先根據(jù)直角三角形兩銳角互余的性質(zhì)求出∠ABM=∠ACN=30°,再根據(jù)三角形的內(nèi)角和定理求出∠BCN+∠CBM=60°,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據(jù)有一個角是60°的等腰三角形是等邊三角形可判斷③;④當(dāng)∠ABC=45°時,∠BCN=45°,進(jìn)而判斷④.【詳解】①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,錯誤;③∵∠A=60°,BM⊥AC于點M,CN⊥AB于點N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵點P是BC的中點,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等邊三角形,正確;④當(dāng)∠ABC=45°時,∵CN⊥AB于點N,∴∠BNC=90°,∠BCN=45°,∵P為BC中點,可得BC=PB=PC,故④正確.所以正確的選項有:①③④故答案為①③④【點睛】本題主要考查了直角三角形斜邊的中線等于斜邊的一半的性質(zhì),相似三角形、等邊三角形、等腰直角三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),仔細(xì)分析圖形并熟練掌握性質(zhì)是解題的關(guān)鍵.14、②③④【解析】

①可用特殊值法證明,當(dāng)為的中點時,,可見.②可連接,交于點,先根據(jù)證明,得到,根據(jù)矩形的性質(zhì)可得,故,又因為,故,故.③先證明,得到,再根據(jù),得到,代換可得.④根據(jù),可知當(dāng)取最小值時,也取最小值,根據(jù)點到直線的距離也就是垂線段最短可得,當(dāng)時,取最小值,再通過計算可得.【詳解】解:①錯誤.當(dāng)為的中點時,,可見;②正確.如圖,連接,交于點,,,,,四邊形為矩形,,,,,,,.③正確.,,,,,又,,,,,.④正確.且四邊形為矩形,,當(dāng)時,取最小值,此時,故的最小值為.故答案為:②③④.【點睛】本題是動點問題,綜合考查了矩形、正方形的性質(zhì),全等三角形與相似三角形的性質(zhì)與判定,線段的最值問題等,合理作出輔助線,熟練掌握各個相關(guān)知識點是解答關(guān)鍵.15、-2-3【解析】

先求出每個不等式的解集,再求出不等式組的解集,即可得出關(guān)于a、b的方程,求出即可.【詳解】解:由題意得:解不等式①得:x>1+a,解不等式②得:x≤不等式組的解集為:1+a<x≤不等式組的解集是﹣1<x≤1,..1+a=-1,=1,解得:a=-2,b=-3故答案為:-2,-3.【點睛】本題主要考查解含參數(shù)的不等式組.16、2【解析】【分析】根據(jù)新定義可得出關(guān)于x的一元一次不等式,解之取其中的正整數(shù)即可得出結(jié)論.【詳解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x為正整數(shù),∴x=2,故答案為:2.【點睛】本題考查一元一次不等式的整數(shù)解以及實數(shù)的運算,通過解不等式找出x<是解題的關(guān)鍵.17、﹣18【解析】

要求代數(shù)式a3b﹣2a2b2+ab3的值,而代數(shù)式a3b﹣2a2b2+ab3恰好可以分解為兩個已知條件ab,(a﹣b)的乘積,因此可以運用整體的數(shù)學(xué)思想來解答.【詳解】a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,當(dāng)a﹣b=3,ab=﹣2時,原式=﹣2×32=﹣18,故答案為:﹣18.【點睛】本題考查了因式分解在代數(shù)式求值中的應(yīng)用,熟練掌握因式分解的方法以及運用整體的數(shù)學(xué)思想是解題的關(guān)鍵.18、【解析】

連接,根據(jù)勾股定理知,可得當(dāng)時,即線段最短,然后由勾股定理即可求得答案.【詳解】連接.∵是的切線,∴;∴,∴當(dāng)時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【點睛】本題考查了切線的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)時,的值最大,【解析】

(1)延長BA、CF交于點G,利用可證△AFG≌△DFC得出,,根據(jù),可證出,得出,利用,,點是的中點,得出,,則有,可得出,得出,即可得出結(jié)論;(2)設(shè)BE=x,則,,由勾股定理得出,,得出,求出,由二次函數(shù)的性質(zhì)得出當(dāng)x=1,即BE=1時,CE2-CF2有最大值,,由三角函數(shù)定義即可得出結(jié)果.【詳解】解:(1)證明:如圖,延長交的延長線于點,∵為的中點,∴.在中,,∴.在和中,∴,∴,,∵.∴,∴,∵,,點是的中點,∴,.∴.∴.∴.在中,,又∵,∴.∴(2)設(shè),則,∵,∴,在中,,在中,,∵,∴,∴,∴當(dāng),即時,的值最大,∴.在中,【點睛】本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理、等腰三角形的判定與性質(zhì)等知識;證明三角形全等和等腰三角形是解題的關(guān)鍵.20、(1)見解析;(2)140人;(1).【解析】

(1)分別利用條形統(tǒng)計圖和扇形統(tǒng)計圖得出總?cè)藬?shù),進(jìn)而得出錯誤的哪組;(2)求出1分以下所占的百分比即可估計成績未達(dá)到合格的有多少名學(xué)生;(1)根據(jù)題意可以畫出相應(yīng)的樹狀圖,從而可以求得張明、李剛兩名同恰好分在同一組的概率.【詳解】(1)由統(tǒng)計圖可得:(1分)(2分)(4分)(5分)甲(人)01764乙(人)22584全體(%)512.5101517.5乙組得分的人數(shù)統(tǒng)計有誤,理由:由條形統(tǒng)計圖和扇形統(tǒng)計圖的對應(yīng)可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,故乙組得5分的人數(shù)統(tǒng)計有誤,正確人數(shù)應(yīng)為:40×17.5%﹣4=1.(2)800×(5%+12.5%)=140(人);(1)如圖得:∵共有16種等可能的結(jié)果,所選兩人正好分在一組的有4種情況,∴所選兩人正好分在一組的概率是:.【點睛】本題考查列表法與樹狀圖法、用樣本估計總體、條形統(tǒng)計圖、扇形統(tǒng)計圖,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件.21、(2)2;(2)y=x+2;(3).【解析】

(2)確定A、B、C的坐標(biāo)即可解決問題;(2)理由待定系數(shù)法即可解決問題;(3)作D關(guān)于x軸的對稱點D′(0,-4),連接CD′交x軸于P,此時PC+PD的值最小,最小值=CD′的長.【詳解】解:(2)∵反比例函數(shù)y=的圖象上的點橫坐標(biāo)與縱坐標(biāo)的積相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)設(shè)直線AB的解析式為y=mx+n,則有,解得,∴直線AB的解析式為y=x+2.(3)∵C、D關(guān)于直線AB對稱,∴D(0,4)作D關(guān)于x軸的對稱點D′(0,-4),連接CD′交x軸于P,此時PC+PD的值最小,最小值=CD′=.【點睛】本題考查反比例函數(shù)圖象上的點的特征,一次函數(shù)的性質(zhì)、反比例函數(shù)的性質(zhì)、軸對稱最短問題等知識,解題的關(guān)鍵是熟練掌握待定系數(shù)法確定函數(shù)解析式,學(xué)會利用軸對稱解決最短問題.22、(1)詳見解析;(2)1.【解析】

(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形.

(2)利用當(dāng)∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出OD和AO的長,即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積.【詳解】(1)證明:由題意可知:∵分別以A、C為圓心,以大于12∴直線DE是線段AC的垂直平分線,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四邊形ADCE是平行四邊形,又∵AC⊥DE,∴四邊形ADCE是菱形;(2)解:當(dāng)∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周長為18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【點睛】考查線段垂直平分線的性質(zhì),菱形的判定,相似三角形的判定與性質(zhì)等,綜合性比較強.23、(1)見解析;(2)見解析【解析】

(1)由題意易得,EF與BC平行且相等,利用四邊形BCFE是平行四邊形.(2)根據(jù)菱形的判定證明即可.【詳解】(1)證明::∵D.E為AB,AC中點∴DE為△ABC的中位線,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四邊形BCEF為平行四邊形.(2)∵四邊形BCEF為平行四邊形,∵∠ACB=60°,∴BC=CE=BE,∴四邊形BCFE是菱形.【點睛】本題考查平行四邊形的判定和性質(zhì)、菱形的判定、等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.24、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值為;(3)P(2,﹣),理由見解析.【解析】

(1)當(dāng)y=0時,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系數(shù)法可求直線l的表達(dá)式;(2)分當(dāng)點M在AO上運動時,當(dāng)點M在OB上運動時,進(jìn)行討論可求D點坐標(biāo),將D點坐標(biāo)代入直線解析式求得t的值;線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,根據(jù)勾股定理可求點M運動的過程中線段CD長度的最小值;(3)分當(dāng)點M在AO上運動時,即0<t<3時,當(dāng)點M在OB上運動時,即3≤t≤4時,進(jìn)行討論可求P點坐標(biāo).【詳解】(1)當(dāng)y=0時,﹣=0,解得x1=1,x2=﹣3,∵點A在點B的左側(cè),∴A(﹣3,0),B(1,0),由解析式得C(0,),設(shè)直線l的表達(dá)式為y=kx+b,將B,C兩點坐標(biāo)代入得b=mk﹣,故直線l的表達(dá)式為y=﹣x+;(2)當(dāng)點M在AO上運動時,如圖:由題意可知AM=t,OM=3﹣t,MC⊥MD,過點D作x軸的垂線垂足為N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO與△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,當(dāng)點M在OB上運動時,如圖,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).綜上得,D(t﹣3+,t﹣3).將D點坐標(biāo)代入直線解析式得t=6﹣2,線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,∵M(jìn)在AB上運動,∴當(dāng)CM⊥AB時,CM最短,CD最短,即CM=CO=,根據(jù)勾股定理得CD最?。唬?)當(dāng)點M在AO上運動時,如圖,即0<t<3時,∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,經(jīng)檢驗t=3﹣是此方程的解,過點P作x軸的垂線交于點Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,當(dāng)點M在OB上運動時,即3≤t≤4時,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣,經(jīng)檢驗t=3﹣是此方程的解,t=3﹣(不符合題意,舍).故P(2,﹣).【點睛】考查了二次函數(shù)綜合題,涉及的知識點有:待定系數(shù)法,勾股定理,等腰直角三角形的性質(zhì),等邊三角形的性質(zhì),三角函數(shù),分類思想的運用,方程思想的運用,綜合性較強,有一定的難度.25、(1)四;(2)見解析;(3).【解析】

(1)比較兩個折線統(tǒng)計圖,找出滿足題意的調(diào)查次數(shù)即可;(2)描出第四次與第五次北京森林覆蓋率,補全折線統(tǒng)計圖即可;(3)根據(jù)第八次全面森林面積除以森林覆蓋率求出全國總面積,除以第九次的森林覆蓋率,即可得到結(jié)果.【詳解】解:(1)觀察兩折線統(tǒng)計圖比較得:從第四次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;故答案為四;(2)補全折線統(tǒng)計圖,如圖所示:(3)根據(jù)題意得:×27.15%=,則全國森林面積可以達(dá)到萬公頃,故答案為.【點睛】此題考查了折線統(tǒng)計圖,弄清題中的數(shù)據(jù)是解本題的關(guān)鍵.26、(1)見解析(2)選擇搖獎【解析】試題分析:(1)畫樹狀圖列出所有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論