甘肅省東鄉(xiāng)族自治縣2024屆中考數(shù)學四模試卷含解析_第1頁
甘肅省東鄉(xiāng)族自治縣2024屆中考數(shù)學四模試卷含解析_第2頁
甘肅省東鄉(xiāng)族自治縣2024屆中考數(shù)學四模試卷含解析_第3頁
甘肅省東鄉(xiāng)族自治縣2024屆中考數(shù)學四模試卷含解析_第4頁
甘肅省東鄉(xiāng)族自治縣2024屆中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省東鄉(xiāng)族自治縣2024屆中考數(shù)學四模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若a是一元二次方程x2﹣x﹣1=0的一個根,則求代數(shù)式a3﹣2a+1的值時需用到的數(shù)學方法是()A.待定系數(shù)法B.配方C.降次D.消元2.如圖,一把矩形直尺沿直線斷開并錯位,點E、D、B、F在同一條直線上,若∠ADE=125°,則∠DBC的度數(shù)為()A.125° B.75° C.65° D.55°3.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a34.某廣場上有一個形狀是平行四邊形的花壇(如圖),分別種有紅、黃、藍、綠、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法錯誤的是()A.紅花、綠花種植面積一定相等B.紫花、橙花種植面積一定相等C.紅花、藍花種植面積一定相等D.藍花、黃花種植面積一定相等5.如圖,已知,那么下列結論正確的是()A. B. C. D.6.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.7.一個六邊形的六個內角都是120°(如圖),連續(xù)四條邊的長依次為1,3,3,2,則這個六邊形的周長是()A.13 B.14 C.15 D.168.據(jù)統(tǒng)計,第22屆冬季奧林匹克運動會的電視轉播時間長達88000小時,社交網(wǎng)站和國際奧委會官方網(wǎng)站也創(chuàng)下冬奧會收看率紀錄.用科學記數(shù)法表示88000為()A.0.88×105B.8.8×104C.8.8×105D.8.8×1069.在實數(shù)π,0,,﹣4中,最大的是()A.π B.0 C. D.﹣410.下列運算,結果正確的是()A.m2+m2=m4 B.2m2n÷mn=4mC.(3mn2)2=6m2n4 D.(m+2)2=m2+411.如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE折疊,當點B的對應點B′落在∠ADC的角平分線上時,則點B′到BC的距離為()A.1或2 B.2或3 C.3或4 D.4或512.如下圖所示,該幾何體的俯視圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.14.如圖,在直角坐標平面xOy中,點A坐標為,,,AB與x軸交于點C,那么AC:BC的值為______.15.如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,點M,N分別是邊BC,AB上的動點,沿MN所在的直線折疊∠B,使點B的對應點B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長為_____.16.小明統(tǒng)計了家里3月份的電話通話清單,按通話時間畫出頻數(shù)分布直方圖(如圖所示),則通話時間不足10分鐘的通話次數(shù)的頻率是_____.17.若am=2,an=3,則am+2n=______.18.如圖,在四邊形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,則CD=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知拋物線y=﹣2x2+4x+c.(1)若拋物線與x軸有兩個交點,求c的取值范圍;(2)若拋物線經(jīng)過點(﹣1,0),求方程﹣2x2+4x+c=0的根.20.(6分)x取哪些整數(shù)值時,不等式5x+2>3(x-1)與x≤2-x都成立?21.(6分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學興趣小組對本班同學一天飲用飲品的情況進行了調查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計結果繪制如下兩個統(tǒng)計圖(如圖),根據(jù)統(tǒng)計圖提供的信息,解答下列問題:請你補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);為了養(yǎng)成良好的生活習慣,班主任決定在自帶白開水的5名同學(男生2人,女生3人)中隨機抽取2名同學擔任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.22.(8分)如圖,點D是AB上一點,E是AC的中點,連接DE并延長到F,使得DE=EF,連接CF.求證:FC∥AB.23.(8分)某學校計劃組織全校1441名師生到相關部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當?shù)刈廛嚬疽还?2輛A,B兩種型號客車作為交通工具.下表是租車公司提供給學校有關兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數(shù)設學校租用A型號客車x輛,租車總費用為y元.求y與x的函數(shù)解析式,請直接寫出x的取值范圍;若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最???最省的總費用是多少?24.(10分)如圖,二次函數(shù)y=ax2+2x+c的圖象與x軸交于點A(﹣1,0)和點B,與y軸交于點C(0,3).(1)求該二次函數(shù)的表達式;(2)過點A的直線AD∥BC且交拋物線于另一點D,求直線AD的函數(shù)表達式;(3)在(2)的條件下,請解答下列問題:①在x軸上是否存在一點P,使得以B、C、P為頂點的三角形與△ABD相似?若存在,求出點P的坐標;若不存在,請說明理由;②動點M以每秒1個單位的速度沿線段AD從點A向點D運動,同時,動點N以每秒個單位的速度沿線段DB從點D向點B運動,問:在運動過程中,當運動時間t為何值時,△DMN的面積最大,并求出這個最大值.25.(10分)如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標;(3)在圖乙中,點C和點C1關于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.26.(12分)老師布置了一個作業(yè),如下:已知:如圖1的對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.某同學寫出了如圖2所示的證明過程,老師說該同學的作業(yè)是錯誤的.請你解答下列問題:能找出該同學錯誤的原因嗎?請你指出來;請你給出本題的正確證明過程.27.(12分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)一元二次方程的解的定義即可求出答案.【詳解】由題意可知:a2-a-1=0,

∴a2-a=1,

或a2-1=a

∴a3-2a+1

=a3-a-a+1

=a(a2-1)-(a-1)

=a2-a+1

=1+1

=2

故選:C.【點睛】本題考查了一元二次方程的解,解題的關鍵是正確理解一元二次方程的解的定義.2、D【解析】

延長CB,根據(jù)平行線的性質求得∠1的度數(shù),則∠DBC即可求得.【詳解】延長CB,延長CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°?∠1=180°?125°=55°.故答案選:D.【點睛】本題考查的知識點是平行線的性質,解題的關鍵是熟練的掌握平行線的性質.3、D【解析】

根據(jù)平方根的運算法則和冪的運算法則進行計算,選出正確答案.【詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.【點睛】本題考查學生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關鍵.4、C【解析】

圖中,線段GH和EF將大平行四邊形ABCD分割成了四個小平行四邊形,平行四邊形的對角線平分該平行四邊形的面積,據(jù)此進行解答即可.【詳解】解:由已知得題圖中幾個四邊形均是平行四邊形.又因為平行四邊形的一條對角線將平行四邊形分成兩個全等的三角形,即面積相等,故紅花和綠花種植面積一樣大,藍花和黃花種植面積一樣大,紫花和橙花種植面積一樣大.故選擇C.【點睛】本題考查了平行四邊形的定義以及性質,知道對角線平分平行四邊形是解題關鍵.5、A【解析】

已知AB∥CD∥EF,根據(jù)平行線分線段成比例定理,對各項進行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.【點睛】本題考查平行線分線段成比例定理,找準對應關系,避免錯選其他答案.6、A【解析】

分別求出各個不等式的解集,再求出這些解集的公共部分并在數(shù)軸上表示出來即可.【詳解】由①,得x≥2,

由②,得x<1,

所以不等式組的解集是:2≤x<1.

不等式組的解集在數(shù)軸上表示為:

故選A.【點睛】本題考查的是解一元一次不等式組.熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.7、C【解析】

解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、I.因為六邊形ABCDEF的六個角都是120°,所以六邊形ABCDEF的每一個外角的度數(shù)都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.8、B【解析】試題分析:根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).因此,∵88000一共5位,∴88000=8.88×104.故選B.考點:科學記數(shù)法.9、C【解析】

根據(jù)實數(shù)的大小比較即可得到答案.【詳解】解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案選C.【點睛】本題主要考查了實數(shù)的大小比較,解本題的要點在于統(tǒng)一根據(jù)二次根式的性質,把根號外的移到根號內,只需比較被開方數(shù)的大小.10、B【解析】

直接利用積的乘方運算法則、合并同類項法則和單項式除以單項式運算法則計算得出答案.【詳解】A.m2+m2=2m2,故此選項錯誤;B.2m2n÷mn=4m,正確;C.(3mn2)2=9m2n4,故此選項錯誤;D.(m+2)2=m2+4m+4,故此選項錯誤.故答案選:B.【點睛】本題考查了乘方運算法則、合并同類項法則和單項式除以單項式運算法則,解題的關鍵是熟練的掌握乘方運算法則、合并同類項法則和單項式除以單項式運算法則.11、A【解析】

連接B′D,過點B′作B′M⊥AD于M.設DM=B′M=x,則AM=7-x,根據(jù)等腰直角三角形的性質和折疊的性質得到:(7-x)2=25-x2,通過解方程求得x的值,易得點B′到BC的距離.【詳解】解:如圖,連接B′D,過點B′作B′M⊥AD于M,∵點B的對應點B′落在∠ADC的角平分線上,∴設DM=B′M=x,則AM=7﹣x,又由折疊的性質知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,則點B′到BC的距離為2或1.故選A.【點睛】本題考查的是翻折變換的性質,掌握翻折變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.12、B【解析】

根據(jù)俯視圖是從上面看到的圖形解答即可.【詳解】從上面看是三個長方形,故B是該幾何體的俯視圖.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】分析:根據(jù)同時同地的物高與影長成正比列式計算即可得解.詳解:設這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點睛:同時同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現(xiàn)了方程的思想.14、【解析】

過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.先證△ADO∽△OEB,再根據(jù)∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根據(jù)平行線分線段成比例得到AC:BC=OD:OE=2∶=【詳解】解:如圖所示:過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.∵∠OAB=30°,∠ADE=90°,∠DEB=90°∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°∴∠DOA=∠OBE∴△ADO∽△OEB∵∠OAB=30°,∠AOB=90°,∴OA∶OB=∵點A坐標為(3,2)∴AD=3,OD=2∵△ADO∽△OEB∴∴OE∵OC∥AD∥BE根據(jù)平行線分線段成比例得:AC:BC=OD:OE=2∶=故答案為.【點睛】本題考查三角形相似的證明以及平行線分線段成比例.15、或1【解析】

圖1,∠B’MC=90°,B’與點A重合,M是BC的中點,所以BM=,圖2,當∠MB’C=90°,∠A=90°,AB=AC,∠C=45°,所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,所以BM=1.【詳解】請在此輸入詳解!16、0.7【解析】

用通話時間不足10分鐘的通話次數(shù)除以通話的總次數(shù)即可得.【詳解】由圖可知:小明家3月份通話總次數(shù)為20+15+10+5=50(次);其中通話不足10分鐘的次數(shù)為20+15=35(次),∴通話時間不足10分鐘的通話次數(shù)的頻率是35÷50=0.7.故答案為0.7.17、18【解析】

運用冪的乘方和積的乘方的運算法則求解即可.【詳解】解:∵am=2,an=3,∴a3m+2n=(am)3×(an)2=23×32=1.故答案為1.【點睛】本題考查了冪的乘方和積的乘方,掌握運算法則是解答本題的關鍵.18、【解析】

延長AD和BC交于點E,在直角△ABE中利用三角函數(shù)求得BE的長,則EC的長即可求得,然后在直角△CDE中利用三角函數(shù)的定義求解.【詳解】如圖,延長AD、BC相交于點E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)c>﹣2;(2)x1=﹣1,x2=1.【解析】

(1)根據(jù)拋物線與x軸有兩個交點,b2-4ac>0列不等式求解即可;

(2)先求出拋物線的對稱軸,再根據(jù)拋物線的對稱性求出拋物線與x軸的另一個交點坐標,然后根據(jù)二次函數(shù)與一元二次方程的關系解答.【詳解】(1)解:∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得拋物線的對稱軸為直線x=1,∵拋物線經(jīng)過點(﹣1,0),∴拋物線與x軸的另一個交點為(1,0),∴方程﹣2x2+4x+c=0的根為x1=﹣1,x2=1.【點睛】考查了拋物線與x軸的交點問題、二次函數(shù)與一元二次方程,解題關鍵是運用了根與系數(shù)的關系以及二次函數(shù)的對稱性.20、-2,-1,0,1【解析】

解不等式5x+2>3(x-1)得:得x>-2.5;解不等式x≤2-x得x≤1.則這兩個不等式解集的公共部分為,因為x取整數(shù),則x?。?,-1,0,1.故答案為-2,-1,0,1【點睛】本題考查了求不等式組的整數(shù)解,先求出每個不等式的解集,再求出它們的公共部分,最后確定公共的整數(shù)解(包括正整數(shù),0,負整數(shù)).21、(1)詳見解析;(2)72°;(3)3【解析】

(1)由B類型的人數(shù)及其百分比求得總人數(shù),在用總人數(shù)減去其余各組人數(shù)得出C類型人數(shù),即可補全條形圖;(2)用360°乘以C類別人數(shù)所占比例即可得;(3)用列表法或畫樹狀圖法列出所有等可能結果,從中確定恰好抽到一男一女的結果數(shù),根據(jù)概率公式求解可得.【詳解】解:(1)∵抽查的總人數(shù)為:20÷40%=50(人)∴C類人數(shù)為:50-5-20-15=10(人)補全條形統(tǒng)計圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數(shù)為:10(3)設男生為A1、A2,女生為B1、B畫樹狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及概率的求法,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、答案見解析【解析】

利用已知條件容易證明△ADE≌△CFE,得出角相等,然后利用平行線的判定可以證明FC∥AB.【詳解】解:∵E是AC的中點,∴AE=CE.在△ADE與△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.【點睛】本題主要考查了全等三角形的性質與判定,平行線的判定定理.通過全等得角相等,然后得到兩線平行時一種常用的方法,應注意掌握運用.23、(1)21≤x≤62且x為整數(shù);(2)共有25種租車方案,當租用A型號客車21輛,B型號客車41輛時,租金最少,為19460元.【解析】

(1)根據(jù)租車總費用=A、B兩種車的費用之和,列出函數(shù)關系式,再根據(jù)AB兩種車至少要能坐1441人即可得取x的取值范圍;(2)由總費用不超過21940元可得關于x的不等式,解不等式后再利用函數(shù)的性質即可解決問題.【詳解】(1)由題意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x為整數(shù);(2)由題意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x為整數(shù),∴共有25種租車方案,∵k=100>0,∴y隨x的增大而增大,當x=21時,y有最小值,y最?。?00×21+17360=19460,故共有25種租車方案,當租用A型號客車21輛,B型號客車41輛時,租金最少,為19460元.【點睛】本題考查了一次函數(shù)的應用、一元一次不等式的應用等,解題的關鍵是理解題意,正確列出函數(shù)關系式,會利用函數(shù)的性質解決最值問題.24、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);當t=時,S△MDN的最大值為.【解析】

(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到結果;

(2)在y=-x2+2x+3中,令y=0,則-x2+2x+3=0,得到B(3,0),由已知條件得直線BC的解析式為y=-x+3,由于AD∥BC,設直線AD的解析式為y=-x+b,即可得到結論;

(3)①由BC∥AD,得到∠DAB=∠CBA,全等只要當或時,△PBC∽△ABD,解方程組得D(4,?5),求得設P的坐標為(x,0),代入比例式解得或x=?4.5,即可得到或P(?4.5,0);

②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF求得求得由于于是得到即可得到結果.【詳解】(1)由題意知:解得∴二次函數(shù)的表達式為(2)在中,令y=0,則解得:∴B(3,0),由已知條件得直線BC的解析式為y=?x+3,∵AD∥BC,∴設直線AD的解析式為y=?x+b,∴0=1+b,∴b=?1,∴直線AD的解析式為y=?x?1;(3)①∵BC∥AD,∴∠DAB=∠CBA,∴只要當:或時,△PBC∽△ABD,解得D(4,?5),∴設P的坐標為(x,0),即或解得或x=?4.5,∴或P(?4.5,0),②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∴sin∠BAF∴∴∵又∵∴∴當時,的最大值為【點睛】屬于二次函數(shù)的綜合題,考查待定系數(shù)法求二次函數(shù)解析式,銳角三角形函數(shù),相似三角形的判定與性質,二次函數(shù)的最值等,綜合性比較強,難度較大.25、(1)y=12x2-x-4(2)點M的坐標為(2,-4)(3)-83【解析】【分析】(1)設交點式y(tǒng)=a(x+2)(x-4),然后把C點坐標代入求出a即可得到拋物線解析式;

(2)連接OM,設點M的坐標為m,12m2-m-4.由題意知,當四邊形OAMC面積最大時,陰影部分的面積最小.S四邊形OAMC=S△OAM(3)拋物線的對稱軸為直線x=1,點C與點C1關于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設點Pn,12n2-n-4,過P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設點M的坐標為m,1由題意知,當四邊形OAMC面積最大時,陰影部分的面積最小.S四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當m=2時,四邊形OAMC面積最大,此時陰影部分面積最小,所以點M的坐標為(2,-4).(3)∵拋物線的對稱軸為直線x=1,點C與點C1關于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設點Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點P的橫坐標為-83或-4【點睛】本題考核知識點:二次函數(shù)綜合運用.解題關鍵點:熟記二次函數(shù)的性質,數(shù)形結合,由所求分析出必知條件.26、(1)能,見解析;(2)見解析.【解析】

(1)直接利用菱形的判定方法分析得出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論