版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
華中師大第一附屬中學(xué)2024年高考沖刺押題(最后一卷)數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.2.3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率是()A. B. C. D.3.?dāng)?shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學(xué)形象美、對稱美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:①曲線C經(jīng)過5個整點(即橫、縱坐標(biāo)均為整數(shù)的點);②曲線C上任意一點到坐標(biāo)原點O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號是()A.①③ B.②④ C.①②③ D.②③④4.已知平面向量,滿足,,且,則()A.3 B. C. D.55.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知函數(shù),,若對,且,使得,則實數(shù)的取值范圍是()A. B. C. D.7.已知集合,,則等于()A. B. C. D.8.陀螺是中國民間較早的娛樂工具之一,但陀螺這個名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現(xiàn).如圖所示的網(wǎng)格紙中小正方形的邊長均為1,粗線畫出的是一個陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.9.A. B. C. D.10.將函數(shù)圖象上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再向右平移個單位長度,則所得函數(shù)圖象的一個對稱中心為()A. B. C. D.11.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.12.已知點是拋物線的對稱軸與準(zhǔn)線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角A,B,C的對邊分別是a,b,c,且,,,則_______.14.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成______種不同的音序.15.已知的展開式中項的系數(shù)與項的系數(shù)分別為135與,則展開式所有項系數(shù)之和為______.16.“北斗三號”衛(wèi)星的運行軌道是以地心為一個焦點的橢圓.設(shè)地球半徑為R,若其近地點?遠(yuǎn)地點離地面的距離大約分別是,,則“北斗三號”衛(wèi)星運行軌道的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.18.(12分)已知曲線:和:(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長度單位.(1)求曲線的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;(2)設(shè)與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.19.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分?jǐn)?shù)為,求的分布列和數(shù)學(xué)期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.20.(12分)某公司打算引進(jìn)一臺設(shè)備使用一年,現(xiàn)有甲、乙兩種設(shè)備可供選擇.甲設(shè)備每臺10000元,乙設(shè)備每臺9000元.此外設(shè)備使用期間還需維修,對于每臺設(shè)備,一年間三次及三次以內(nèi)免費維修,三次以外的維修費用均為每次1000元.該公司統(tǒng)計了曾使用過的甲、乙各50臺設(shè)備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設(shè)備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設(shè)備5103050乙設(shè)備05151515(1)設(shè)甲、乙兩種設(shè)備每臺購買和一年間維修的花費總額分別為和,求和的分布列;(2)若以數(shù)學(xué)期望為決策依據(jù),希望設(shè)備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設(shè)備?請說明理由.21.(12分)中,內(nèi)角的對邊分別為,.(1)求的大?。唬?)若,且為的重心,且,求的面積.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程;(2)若曲線與直線交于兩點,點的坐標(biāo)為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運算能力.2、D【解析】
把5本書編號,然后用列舉法列出所有基本事件.計數(shù)后可求得概率.【詳解】3本不同的語文書編號為,2本不同的數(shù)學(xué)書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數(shù)學(xué)書的只有一種,∴所求概率為.故選:D.【點睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數(shù)計算概率.3、B【解析】
利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當(dāng)且僅當(dāng)時取等號),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點,,,,則①和③都錯誤;由,得④正確.故選:B.【點睛】本題考查曲線與方程的應(yīng)用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.4、B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點睛】考查向量的數(shù)量積及向量模的運算,是基礎(chǔ)題.5、A【解析】
本題根據(jù)基本不等式,結(jié)合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【詳解】當(dāng)時,,則當(dāng)時,有,解得,充分性成立;當(dāng)時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【點睛】易出現(xiàn)的錯誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.6、D【解析】
先求出的值域,再利用導(dǎo)數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個根求參數(shù)范圍即可.【詳解】因為,故,當(dāng)時,,故在區(qū)間上單調(diào)遞減;當(dāng)時,,故在區(qū)間上單調(diào)遞增;當(dāng)時,令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當(dāng)趨近于零時,趨近于正無窮;對函數(shù),當(dāng)時,;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.【點睛】本題考查利用導(dǎo)數(shù)研究由方程根的個數(shù)求參數(shù)范圍的問題,涉及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問題,屬綜合困難題.7、B【解析】
解不等式確定集合,然后由補集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.8、C【解析】
根據(jù)三視圖可知,該幾何體是由兩個圓錐和一個圓柱構(gòu)成,由此計算出陀螺的表面積.【詳解】最上面圓錐的母線長為,底面周長為,側(cè)面積為,下面圓錐的母線長為,底面周長為,側(cè)面積為,沒被擋住的部分面積為,中間圓柱的側(cè)面積為.故表面積為,故選C.【點睛】本小題主要考查中國古代數(shù)學(xué)文化,考查三視圖還原為原圖,考查幾何體表面積的計算,屬于基礎(chǔ)題.9、A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.10、D【解析】
先化簡函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對稱性得解.【詳解】,
將函數(shù)圖象上各點的橫坐標(biāo)伸長到原來的3倍,所得函數(shù)的解析式為,
再向右平移個單位長度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個對稱中心為,故選D.【點睛】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點之一,經(jīng)??疾槎x域、值域、周期性、對稱性、奇偶性、單調(diào)性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進(jìn)行體現(xiàn),在復(fù)習(xí)時要注意基礎(chǔ)知識的理解與落實.三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時要抓住函數(shù)解析式這個關(guān)鍵,在函數(shù)解析式較為復(fù)雜時要注意使用三角恒等變換公式把函數(shù)解析式化為一個角的一個三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.11、A【解析】
首先求出樣本空間樣本點為個,再利用分類計數(shù)原理求出三個正面向上為連續(xù)的3個“1”的樣本點個數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點數(shù),根據(jù)古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續(xù)的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復(fù),重復(fù)數(shù)量為,事件的樣本點數(shù)為:個.故不同的樣本點數(shù)為8個,.故選:A【點睛】本題考查了分類計數(shù)原理與分步計數(shù)原理,古典概型的概率計算公式,屬于基礎(chǔ)題12、B【解析】
設(shè),利用兩點間的距離公式求出的表達(dá)式,結(jié)合基本不等式的性質(zhì)求出的最大值時的點坐標(biāo),結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因為是拋物線的對稱軸與準(zhǔn)線的交點,點為拋物線的焦點,所以,則,當(dāng)時,,當(dāng)時,,當(dāng)且僅當(dāng)時取等號,此時,,點在以為焦點的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】
已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得結(jié)果.【詳解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案為:.【點睛】本題考查正余弦定理在解三角形中的應(yīng)用,難度一般.14、1【解析】
按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);③若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1.【點睛】本題主要考查利用排列知識解決實際問題,涉及分步計數(shù)乘法原理和分類計數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類討論思想的應(yīng)用和綜合運用知識的能力,屬于基礎(chǔ)題.15、64【解析】
由題意先求得的值,再令求出展開式中所有項的系數(shù)和.【詳解】的展開式中項的系數(shù)與項的系數(shù)分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數(shù)之和為.故答案為:64【點睛】本題考查了二項式定理,考查了賦值法求多項式展開式的系數(shù)和,屬于基礎(chǔ)題.16、【解析】
畫出圖形,結(jié)合橢圓的定義和題設(shè)條件,求得的值,即可求得橢圓的離心率,得到答案.【詳解】如圖所示,設(shè)橢圓的長半軸為,半焦距為,因為地球半徑為R,若其近地點?遠(yuǎn)地點離地面的距離大約分別是,,可得,解得,所以橢圓的離心率為.故答案為:.【點睛】本題主要考查了橢圓的離心率的求解,其中解答中熟記橢圓的幾何性質(zhì),列出方程組,求得的值是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)先利用導(dǎo)數(shù)的四則運算法則和導(dǎo)數(shù)公式求出,再由函數(shù)的導(dǎo)數(shù)可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點;(2)由題意可將轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論研究其在上的單調(diào)性,由,即可求出的取值范圍.【詳解】(1)若,則,,設(shè),則,,,故函數(shù)是奇函數(shù).當(dāng)時,,,這時,又函數(shù)是奇函數(shù),所以當(dāng)時,.綜上,當(dāng)時,函數(shù)單調(diào)遞增;當(dāng)時,函數(shù)單調(diào)遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒有零點.(2),由,所以恒成立,若,則,設(shè),.故當(dāng)時,,又,所以當(dāng)時,,滿足題意;當(dāng)時,有,與條件矛盾,舍去;當(dāng)時,令,則,又,故在區(qū)間上有無窮多個零點,設(shè)最小的零點為,則當(dāng)時,,因此在上單調(diào)遞增.,所以.于是,當(dāng)時,,得,與條件矛盾.故的取值范圍是.【點睛】本題主要考查導(dǎo)數(shù)的四則運算法則和導(dǎo)數(shù)公式的應(yīng)用,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論思想和放縮法的應(yīng)用,難度較大,意在考查學(xué)生的數(shù)學(xué)建模能力,數(shù)學(xué)運算能力和邏輯推理能力,屬于較難題.18、(1),;(2)1.【解析】
(1)利用正弦的和角公式,結(jié)合極坐標(biāo)化為直角坐標(biāo)的公式,即可求得曲線的直角坐標(biāo)方程;先寫出曲線的普通方程,再利用公式化簡為極坐標(biāo)即可;(2)先求出的直角坐標(biāo),據(jù)此求得中點的直角坐標(biāo),將其轉(zhuǎn)化為極坐標(biāo),聯(lián)立曲線的極坐標(biāo)方程,即可求得兩點的極坐標(biāo),則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標(biāo)方程為:,:的普通方程為,利用公式可得其極坐標(biāo)方程為(2)由(1)可得的直角坐標(biāo)方程為,故容易得,,∴,∴的極坐標(biāo)方程為,把代入得,.把代入得,.∴,即,兩點間的距離為1.【點睛】本題考查極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)化,涉及參數(shù)方程轉(zhuǎn)化為普通方程,以及在極坐標(biāo)系中求兩點之間的距離,屬綜合基礎(chǔ)題.19、見解析【解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學(xué)期望.(2)由題可得,所以,又,,所以,所以是以為首項,為公比的等比數(shù)列.(3)由(2)可得.20、(1)分布列見解析,分布列見解析;(2)甲設(shè)備,理由見解析【解析】
(1)的可能取值為10000,1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 柳州職業(yè)技術(shù)學(xué)院《動畫劇本與分鏡設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西中醫(yī)藥大學(xué)《畫法幾何與土建制圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 新蘇教版一年級下冊數(shù)學(xué)第1單元第1課時《9加幾》教案
- 華僑大學(xué)《思想道德修養(yǎng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北科技職業(yè)學(xué)院《Web應(yīng)用與開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 河南中醫(yī)藥大學(xué)《音樂基礎(chǔ)理論2》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶輕工職業(yè)學(xué)院《辦公空間設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 駐馬店職業(yè)技術(shù)學(xué)院《馬克思主義中國化》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江萬里學(xué)院《金融風(fēng)險分析師(FRM)專題(雙語)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江工貿(mào)職業(yè)技術(shù)學(xué)院《證券投資常識》2023-2024學(xué)年第一學(xué)期期末試卷
- 開展課外讀物負(fù)面清單管理的具體實施舉措方案
- 中國骨關(guān)節(jié)炎診療指南(2024版)解讀
- 2025年內(nèi)蒙古包鋼集團(tuán)公司招聘筆試參考題庫含答案解析
- 企業(yè)內(nèi)訓(xùn)師培訓(xùn)師理論知識考試題庫500題(含各題型)
- 2025年云南中煙工業(yè)限責(zé)任公司招聘420人高頻重點提升(共500題)附帶答案詳解
- 2024年山西省晉中市公開招聘警務(wù)輔助人員(輔警)筆試專項訓(xùn)練題試卷(2)含答案
- 2023九年級歷史上冊 第二單元 5《羅馬城邦和羅馬帝國》教學(xué)實錄 新人教版
- 仁愛英語八年級上冊詞匯練習(xí)題全冊
- 報價單模板及范文(通用十二篇)
- 鈑金部品質(zhì)控制計劃
- 標(biāo)準(zhǔn)內(nèi)包骨架油封規(guī)格及公差
評論
0/150
提交評論