版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省東莞市寮步宏偉中學2024年中考數學適應性模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.把拋物線y=﹣2x2向上平移1個單位,再向右平移1個單位,得到的拋物線是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣12.某運動會頒獎臺如圖所示,它的主視圖是()A. B. C. D.3.如圖,數軸上的A、B、C、D四點中,與數﹣表示的點最接近的是()A.點A B.點B C.點C D.點D4.一、單選題如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.5.不等式的解集在數軸上表示正確的是()A. B. C. D.6.如圖圖形中是中心對稱圖形的是()A. B.C. D.7.“一般的,如果二次函數y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數根.——蘇科版《數學》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實數根的情況是()A.有三個實數根 B.有兩個實數根 C.有一個實數根 D.無實數根8.如圖,正比例函數的圖像與反比例函數的圖象相交于A、B兩點,其中點A的橫坐標為2,當時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>29.下列說法中正確的是()A.檢測一批燈泡的使用壽命適宜用普查.B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就一定有5次正面朝上.C.“367人中有兩人是同月同日生”為必然事件.D.“多邊形內角和與外角和相等”是不可能事件.10.下列四個命題中,真命題是()A.相等的圓心角所對的兩條弦相等B.圓既是中心對稱圖形也是軸對稱圖形C.平分弦的直徑一定垂直于這條弦D.相切兩圓的圓心距等于這兩圓的半徑之和二、填空題(本大題共6個小題,每小題3分,共18分)11.若m是方程2x2﹣3x﹣1=0的一個根,則6m2﹣9m+2016的值為_____.12.一組數:2,1,3,,7,,23,…,滿足“從第三個數起,前兩個數依次為、,緊隨其后的數就是”,例如這組數中的第三個數“3”是由“”得到的,那么這組數中表示的數為______.13.在△ABC中,MN∥BC分別交AB,AC于點M,N;若AM=1,MB=2,BC=3,則MN的長為_____.14.規(guī)定一種新運算“*”:a*b=a-b,則方程x*2=1*x的解為________.15.關于x的一元二次方程kx2﹣2x+1=0有兩個不相等的實數根,則k的取值范圍是.16.如圖,ABCDE是正五邊形,已知AG=1,則FG+JH+CD=_____.三、解答題(共8題,共72分)17.(8分)如圖,是等腰三角形,,.(1)尺規(guī)作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.18.(8分)在平面直角坐標系xOy中,拋物線y=mx2﹣2mx﹣3(m≠0)與x軸交于A(3,0),B兩點.(1)求拋物線的表達式及點B的坐標;(2)當﹣2<x<3時的函數圖象記為G,求此時函數y的取值范圍;(3)在(2)的條件下,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M.若經過點C(4.2)的直線y=kx+b(k≠0)與圖象M在第三象限內有兩個公共點,結合圖象求b的取值范圍.19.(8分)拋物線:與軸交于,兩點(點在點左側),拋物線的頂點為.(1)拋物線的對稱軸是直線________;(2)當時,求拋物線的函數表達式;(3)在(2)的條件下,直線:經過拋物線的頂點,直線與拋物線有兩個公共點,它們的橫坐標分別記為,,直線與直線的交點的橫坐標記為,若當時,總有,請結合函數的圖象,直接寫出的取值范圍.20.(8分)閱讀下面材料:已知:如圖,在正方形ABCD中,邊AB=a1.按照以下操作步驟,可以從該正方形開始,構造一系列的正方形,它們之間的邊滿足一定的關系,并且一個比一個小.操作步驟作法由操作步驟推斷(僅選取部分結論)第一步在第一個正方形ABCD的對角線AC上截取AE=a1,再作EF⊥AC于點E,EF與邊BC交于點F,記CE=a2(i)△EAF≌△BAF(判定依據是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2為②:第二步以CE為邊構造第二個正方形CEFG;第三步在第二個正方形的對角線CF上截取FH=a2,再作IH⊥CF于點H,IH與邊CE交于點I,記CH=a3:(iv)用只含a1的式子表示a3為③:第四步以CH為邊構造第三個正方形CHIJ這個過程可以不斷進行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④請解決以下問題:(1)完成表格中的填空:①;②;③;④;(2)根據以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).21.(8分)如圖,為的直徑,,為上一點,過點作的弦,設.(1)若時,求、的度數各是多少?(2)當時,是否存在正實數,使弦最短?如果存在,求出的值,如果不存在,說明理由;(3)在(1)的條件下,且,求弦的長.22.(10分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數進行調查統計.現從該校隨機抽取名學生作為樣本,采用問卷調查的方法收集數據(參與問卷調查的每名學生只能選擇其中一項).并根據調查得到的數據繪制成了如圖所示的兩幅不完整的統計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數;若調查到喜愛體育活動的4名學生中有3名男生和1名女生,現從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.23.(12分)如圖,一根電線桿PQ直立在山坡上,從地面的點A看,測得桿頂端點P的仰角為45°,向前走6m到達點B,又測得桿頂端點P和桿底端點Q的仰角分別為60°和30°,求電線桿PQ的高度.(結果保留根號).24.如圖,在△ABC中,AD=15,AC=12,DC=9,點B是CD延長線上一點,連接AB,若AB=1.求:△ABD的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
∵函數y=-2x2的頂點為(0,0),∴向上平移1個單位,再向右平移1個單位的頂點為(1,1),∴將函數y=-2x2的圖象向上平移1個單位,再向右平移1個單位,得到拋物線的解析式為y=-2(x-1)2+1,故選B.【點睛】二次函數的平移不改變二次項的系數;關鍵是根據上下平移改變頂點的縱坐標,左右平移改變頂點的橫坐標得到新拋物線的頂點.2、C【解析】
從正面看到的圖形如圖所示:,故選C.3、B【解析】
,計算-1.732與-3,-2,-1的差的絕對值,確定絕對值最小即可.【詳解】,,,,因為0.268<0.732<1.268,所以表示的點與點B最接近,故選B.4、D【解析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.5、B【解析】
根據不等式的性質:先移項,再合并即可解得不等式的解集,最后將解集表示在數軸上即可.【詳解】解:解:移項得,
x≤3-2,
合并得,
x≤1;
在數軸上表示應包括1和它左邊的部分,如下:;
故選:B.【點睛】本題考查了一元一次不等式的解集的求法及在數軸上表示不等式的解集,注意數軸上包括的端點實心點表示.6、B【解析】
把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形.【詳解】解:根據中心對稱圖形的定義可知只有B選項是中心對稱圖形,故選擇B.【點睛】本題考察了中心對稱圖形的含義.7、C【解析】試題分析:由得,,即是判斷函數與函數的圖象的交點情況.因為函數與函數的圖象只有一個交點所以方程只有一個實數根故選C.考點:函數的圖象點評:函數的圖象問題是初中數學的重點和難點,是中考常見題,在壓軸題中比較常見,要特別注意.8、D【解析】
先根據反比例函數與正比例函數的性質求出B點坐標,再由函數圖象即可得出結論.【詳解】解:∵反比例函數與正比例函數的圖象均關于原點對稱,
∴A、B兩點關于原點對稱,
∵點A的橫坐標為1,∴點B的橫坐標為-1,
∵由函數圖象可知,當-1<x<0或x>1時函數y1=k1x的圖象在的上方,
∴當y1>y1時,x的取值范圍是-1<x<0或x>1.
故選:D.【點睛】本題考查的是反比例函數與一次函數的交點問題,能根據數形結合求出y1>y1時x的取值范圍是解答此題的關鍵.9、C【解析】【分析】根據相關的定義(調查方式,概率,可能事件,必然事件)進行分析即可.【詳解】A.檢測一批燈泡的使用壽命不適宜用普查,因為有破壞性;B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就可能有5次正面朝上,因為這是隨機事件;C.“367人中有兩人是同月同日生”為必然事件.因為一年只有365天或366天,所以367人中至少有兩個日子相同;D.“多邊形內角和與外角和相等”是可能事件.如四邊形內角和和外角和相等.故正確選項為:C【點睛】本題考核知識點:對(調查方式,概率,可能事件,必然事件)理解.解題關鍵:理解相關概念,合理運用舉反例法.10、B【解析】試題解析:A.在同圓或等圓中,相等的圓心角所對的兩條弦相等,故A項錯誤;B.圓既是中心對稱圖形也是軸對稱圖形,正確;C.平分弦(不是直徑)的直徑一定垂直于這條弦,故C選項錯誤;D.外切兩圓的圓心距等于這兩圓的半徑之和,故選項D錯誤.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.【解析】
把x=m代入方程,求出2m2﹣3m=2,再變形后代入,即可求出答案.【詳解】解:∵m是方程2x2﹣3x﹣2=0的一個根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案為:2.【點睛】本題考查了求代數式的值和一元二次方程的解,解此題的關鍵是能求出2m2﹣3m=2.12、-9.【解析】
根據題中給出的運算法則按照順序求解即可.【詳解】解:根據題意,得:,.故答案為:-9.【點睛】本題考查了有理數的運算,理解題意、弄清題目給出的運算法則是正確解題的關鍵.13、1【解析】
∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案為1.14、【解析】
根據題中的新定義化簡所求方程,求出方程的解即可.【詳解】根據題意得:x-×2=×1-,x=,解得:x=,故答案為x=.【點睛】此題的關鍵是掌握新運算規(guī)則,轉化成一元一元一次方程,再解這個一元一次方程即可.15、k<1且k≠1【解析】試題分析:根據一元二次方程的定義和△的意義得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范圍.解:∵關于x的一元二次方程kx2﹣2x+1=1有兩個不相等的實數根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范圍為k<1且k≠1.故答案為k<1且k≠1.考點:根的判別式;一元二次方程的定義.16、+1【解析】
根據對稱性可知:GJ∥BH,GB∥JH,∴四邊形JHBG是平行四邊形,∴JH=BG,同理可證:四邊形CDFB是平行四邊形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,設FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG?BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=(負根已經舍棄),∴BF=+1=,∴FG+JH+CD=+1.故答案為+1.三、解答題(共8題,共72分)17、(1)作圖見解析(2)為等腰三角形【解析】
(1)作角平分線,以B點為圓心,任意長為半徑,畫圓??;交直線AB于1點,直線BC于2點,再以2點為圓心,任意長為半徑,畫圓弧,再以1點為圓心,任意長為半徑,畫圓弧,相交于3點,連接3點和O點,直線3O即是已知角AOB的對稱中心線.(2)分別求出的三個角,看是否有兩個角相等,進而判斷是否為等腰三角形.【詳解】(1)具體如下:(2)在等腰中,,BD為∠ABC的平分線,故,,那么在中,∵∴是否為等腰三角形.【點睛】本題考查角平分線的作法,以及判定等腰三角形的方法.熟悉了解角平分線的定義以及等腰三角形的判定方法是解題的關鍵所在.18、(1)拋物線的表達式為y=x2﹣2x﹣2,B點的坐標(﹣1,0);(2)y的取值范圍是﹣3≤y<1.(2)b的取值范圍是﹣<b<.【解析】
(1)、將點A坐標代入求出m的值,然后根據二次函數的性質求出點B的坐標;(2)、將二次函數配成頂點式,然后根據二次函數的增減性得出y的取值范圍;(2)、根據函數經過(-1,0)、(3,2)和(0,-2)、(3,2)分別求出兩個一次函數的解析式,從而得出b的取值范圍.【詳解】(1)∵將A(2,0)代入,得m=1,∴拋物線的表達式為y=-2x-2.令-2x-2=0,解得:x=2或x=-1,∴B點的坐標(-1,0).(2)y=-2x-2=-3.∵當-2<x<1時,y隨x增大而減小,當1≤x<2時,y隨x增大而增大,∴當x=1,y最小=-3.又∵當x=-2,y=1,∴y的取值范圍是-3≤y<1.(2)當直線y=kx+b經過B(-1,0)和點(3,2)時,解析式為y=x+.當直線y=kx+b經過(0,-2)和點(3,2)時,解析式為y=x-2.由函數圖象可知;b的取值范圍是:-2<b<.【點睛】本題主要考查的就是二次函數的性質、一次函數的性質以及函數的交點問題.在解決第二個問題的時候,我們首先必須要明確給出x的取值范圍是否是在對稱軸的一邊還是兩邊,然后根據函數圖形進行求解;對于第三問我們必須能夠根據題意畫出函數圖象,然后根據函數圖象求出取值范圍.在解決二次函數的題目時,畫圖是非常關鍵的基本功.19、(1);(2);(3)【解析】
(1)根據拋物線的函數表達式,利用二次函數的性質即可找出拋物線的對稱軸;(2)根據拋物線的對稱軸及即可得出點、的坐標,根據點的坐標,利用待定系數法即可求出拋物線的函數表達式;(3)利用配方法求出拋物線頂點的坐標,依照題意畫出圖形,觀察圖形可得出,再利用一次函數圖象上點的坐標特征可得出,結合的取值范圍即可得出的取值范圍.【詳解】(1)∵拋物線的表達式為,∴拋物線的對稱軸為直線.故答案為:.(2)∵拋物線的對稱軸為直線,,∴點的坐標為,點的坐標為.將代入,得:,解得:,∴拋物線的函數表達式為.(3)∵,∴點的坐標為.∵直線y=n與直線的交點的橫坐標記為,且當時,總有,∴x2<x3<x1,∵x3>0,∴直線與軸的交點在下方,∴.∵直線:經過拋物線的頂點,∴,∴.【點睛】本題考查了二次函數的性質、待定系數法求二次函數解析式以及一次函數圖象上點的坐標特征,解題的關鍵是:(1)利用二次函數的性質找出拋物線的對稱軸;(2)根據點的坐標,利用待定系數法求出二次函數表達式;(3)依照題意畫出圖形,利用數形結合找出.20、(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)見解析.【解析】
(1)①由題意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由題意得AB=AE=a1,AC=a1,則CE=a2=a1﹣a1=(﹣1)a1;③同上可知CF=CE=(-1)a1,FH=EF=a2,則CH=a3=CF﹣FH=(-1)2a1;④同理可得an=(-1)n-1a1;(2)根據題意畫圖即可.【詳解】解:(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等;理由是:如圖1,在Rt△EAF和Rt△BAF中,∵,∴Rt△EAF≌Rt△BAF(HL);②∵四邊形ABCD是正方形,∴AB=BC=a1,∠ABC=90°,∴AC=a1,∵AE=AB=a1,∴CE=a2=a1﹣a1=(﹣1)a1;③∵四邊形CEFG是正方形,∴△CEF是等腰直角三角形,∴CF=CE=(-1)a1,∵FH=EF=a2,∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;④同理可得:an=(-1)n-1a1;故答案為①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)所畫正方形CHIJ見右圖.21、(1),;(2)見解析;(3).【解析】
(1)連結AD、BD,利用m求出角的關系進而求出∠BCD、∠ACD的度數;
(2)連結,由所給關系式結合直徑求出AP,OP,根據弦CD最短,求出∠BCD、∠ACD的度數,即可求出m的值.
(3)連結AD、BD,先求出AD,BD,AP,BP的長度,利用△APC∽△DPB和△CPB∽△APD得出比例關系式,得出比例關系式結合勾股定理求出CP,PD,即可求出CD.【詳解】解:(1)如圖1,連結、.是的直徑,又,,(2)如圖2,連結.,,,則,解得要使最短,則于,,,故存在這樣的值,且;(3)如圖3,連結、.由(1)可得,,,,,,,,①,②同理,③,由①得,由③得,在中,,,由②,得,.【點睛】本題考查了相似三角形的判定與性質和銳角三角函數關系和圓周角定理等知識,掌握圓周角定理以及垂徑定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度旅游租賃托管管理合同范本3篇
- 2024年柑橘供應商合同范本
- 2024年廣場店面租賃合同2篇
- 2024年某石油公司與某管道公司關于油氣輸送的合同
- 2024年度塔吊運營效益分享合同3篇
- 2024年度副校長工作目標管理與激勵機制合同3篇
- 2024年度事業(yè)單位科研設備操作人員聘用合同書封面3篇
- 2024年校園監(jiān)控設施升級合同
- 2024外訓培訓項目市場調研與分析合同3篇
- 2024年度交通運輸安全評價技術服務合同正規(guī)范范本2篇
- 網課智慧樹知道《英漢口譯(四川大學)》章節(jié)測試答案
- 小學三年級上冊道德與法治期末測試卷及答案(各地真題)
- 2024年高考語文二輪復習各地??甲魑臎_刺匯編(八)含范文
- (高清版)JTT 617.4-2018 危險貨物道路運輸規(guī)則 第4部分:運輸包裝使用要求(第1號修改單)
- 人教部編版八年級數學上冊期末考試卷及答案一
- 哲學與人生第12課《實現人生價值》12.2
- (附答案)2024公需課《百縣千鎮(zhèn)萬村高質量發(fā)展工程與城鄉(xiāng)區(qū)域協調發(fā)展》試題廣東公需科
- 微創(chuàng)冠脈搭橋手術
- 四川省公需科目(數字經濟與驅動發(fā)展)考試題庫及答案
- 智慧醫(yī)療信息化建設項目技術標準建設方案
- 工程建設監(jiān)理收費標準(發(fā)改價格【2007】670號)
評論
0/150
提交評論