廣東省廣州市越秀區(qū)達標名校2023-2024學年中考數(shù)學仿真試卷含解析_第1頁
廣東省廣州市越秀區(qū)達標名校2023-2024學年中考數(shù)學仿真試卷含解析_第2頁
廣東省廣州市越秀區(qū)達標名校2023-2024學年中考數(shù)學仿真試卷含解析_第3頁
廣東省廣州市越秀區(qū)達標名校2023-2024學年中考數(shù)學仿真試卷含解析_第4頁
廣東省廣州市越秀區(qū)達標名校2023-2024學年中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省廣州市越秀區(qū)達標名校2023-2024學年中考數(shù)學仿真試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為()A.8 B.8 C.4 D.62.已知一組數(shù)據(jù)1、2、3、x、5,它們的平均數(shù)是3,則這一組數(shù)據(jù)的方差為()A.1 B.2 C.3 D.43.如圖,是的直徑,弦,,,則陰影部分的面積為()A.2π B.π C. D.4.有兩把不同的鎖和三把鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,第三把鑰匙不能打開這兩把鎖,任意取出一把鑰匙去開任意的一把鎖,一次打開鎖的概率是()A. B. C. D.5.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點,且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°6.已知,下列說法中,不正確的是()A. B.與方向相同C. D.7.如圖,在⊙O中,弦BC=1,點A是圓上一點,且∠BAC=30°,則的長是()A.π B. C. D.8.如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于M,N兩點,作直線MN交AD于點E,則△CDE的周長是()A.7 B.10 C.11 D.129.已知關(guān)于x的一元二次方程有兩個相等的實根,則k的值為()A. B. C.2或3 D.或10.數(shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,把一個面積為1的正方形分成兩個面積為的長方形,再把其中一個面積為的長方形分成兩個面積為的正方形,再把其中一個面積為的正方形分成兩個面積為的長方形,如此進行下去……,試用圖形揭示的規(guī)律計算:__________.12.在“三角尺拼角”實驗中,小明同學把一副三角尺按如圖所示的方式放置,則∠1=__________°.13.如圖,在△ABC中,P,Q分別為AB,AC的中點.若S△APQ=1,則S四邊形PBCQ=__.14.如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC15.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉(zhuǎn)α(0°<α<360°),得到線段AC’,連接DC’,當DC’//BC時,旋轉(zhuǎn)角度α的值為_________,16.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.三、解答題(共8題,共72分)17.(8分)我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學生共有______人,扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為______°.(2)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為_______人.(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.18.(8分)如圖,在平面直角坐標系中,拋物線與x軸交于點A、B,與y軸交于點C,直線y=x+4經(jīng)過點A、C,點P為拋物線上位于直線AC上方的一個動點.(1)求拋物線的表達式;(2)如圖,當CP//AO時,求∠PAC的正切值;(3)當以AP、AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上時,求出此時點P的坐標.19.(8分)撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:本次抽樣調(diào)查共抽取了多少名學生?求測試結(jié)果為C等級的學生數(shù),并補全條形圖;若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名?若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.20.(8分)如圖,在△ABC中,點D在邊BC上,聯(lián)結(jié)AD,∠ADB=∠CDE,DE交邊AC于點E,DE交BA延長線于點F,且AD2=DE?DF.(1)求證:△BFD∽△CAD;(2)求證:BF?DE=AB?AD.21.(8分)如圖,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(1,1),B(4,0),C(4,4).按下列要求作圖:①將△ABC向左平移4個單位,得到△A1B1C1;②將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°,得到△A1B1C1.求點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.22.(10分)如圖,在中,,平分,交于點,點在上,經(jīng)過兩點,交于點,交于點.求證:是的切線;若的半徑是,是弧的中點,求陰影部分的面積(結(jié)果保留和根號).23.(12分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F(1)求證:△ADE≌△BFE;(2)若DF平分∠ADC,連接CE,試判斷CE和DF的位置關(guān)系,并說明理由.24.如圖,BD是矩形ABCD的一條對角線.(1)作BD的垂直平分線EF,分別交AD、BC于點E、F,垂足為點O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);(2)求證:DE=BF.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:連接OB,根據(jù)等腰三角形三線合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點睛:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關(guān)鍵.2、B【解析】

先由平均數(shù)是3可得x的值,再結(jié)合方差公式計算.【詳解】∵數(shù)據(jù)1、2、3、x、5的平均數(shù)是3,∴=3,解得:x=4,則數(shù)據(jù)為1、2、3、4、5,∴方差為×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故選B.【點睛】本題主要考查算術(shù)平均數(shù)和方差,解題的關(guān)鍵是熟練掌握平均數(shù)和方差的定義.3、D【解析】分析:連接OD,則根據(jù)垂徑定理可得出CE=DE,繼而將陰影部分的面積轉(zhuǎn)化為扇形OBD的面積,代入扇形的面積公式求解即可.詳解:連接OD,∵CD⊥AB,∴(垂徑定理),故即可得陰影部分的面積等于扇形OBD的面積,又∵∴(圓周角定理),∴OC=2,故S扇形OBD=即陰影部分的面積為.故選D.點睛:考查圓周角定理,垂徑定理,扇形面積的計算,熟記扇形的面積公式是解題的關(guān)鍵.4、B【解析】解:將兩把不同的鎖分別用A與B表示,三把鑰匙分別用A,B與C表示,且A鑰匙能打開A鎖,B鑰匙能打開B鎖,畫樹狀圖得:∵共有6種等可能的結(jié)果,一次打開鎖的有2種情況,∴一次打開鎖的概率為:.故選B.點睛:本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.5、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質(zhì).注意:根據(jù)斜邊和直角邊對應相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點睛:熟練運用等腰直角三角形三線合一性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關(guān)鍵.6、A【解析】

根據(jù)平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【點睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.7、B【解析】

連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長公式計算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長=,故選B.【點睛】考查弧長公式,等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,屬于中考??碱}型.8、B【解析】∵四邊形ABCD是平行四邊形,

∴AD=BC=4,CD=AB=6,

∵由作法可知,直線MN是線段AC的垂直平分線,

∴AE=CE,

∴AE+DE=CE+DE=AD,

∴△CDE的周長=CE+DE+CD=AD+CD=4+6=1.

故選B.9、A【解析】

根據(jù)方程有兩個相等的實數(shù)根結(jié)合根的判別式即可得出關(guān)于k的方程,解之即可得出結(jié)論.【詳解】∵方程有兩個相等的實根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關(guān)鍵.10、A【解析】

眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

結(jié)合圖形發(fā)現(xiàn)計算方法:,即計算其面積和的時候,只需讓總面積減去剩下的面積.【詳解】解:原式==故答案為:【點睛】此題注意結(jié)合圖形的面積找到計算的方法:其中的面積和等于總面積減去剩下的面積.12、1【解析】試題分析:由三角形的外角的性質(zhì)可知,∠1=90°+30°=1°,故答案為1.考點:三角形的外角性質(zhì);三角形內(nèi)角和定理.13、1【解析】

根據(jù)三角形的中位線定理得到PQ=BC,得到相似比為,再根據(jù)相似三角形面積之比等于相似比的平方,可得到結(jié)果.【詳解】解:∵P,Q分別為AB,AC的中點,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.【點睛】本題考查相似三角形的判定和性質(zhì),三角形中位線定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.14、60【解析】∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°∴θ=60°.15、15或255°【解析】如下圖,設(shè)直線DC′與AB相交于點E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當DC′∥BC時,旋轉(zhuǎn)角=15°;同理,當DC′′∥BC時,旋轉(zhuǎn)角=180°-45°-60°=255°;綜上所述,當旋轉(zhuǎn)角=15°或255°時,DC′//BC.故答案為:15°或255°.16、.【解析】

解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.三、解答題(共8題,共72分)17、(1)60,30;;(2)300;(3)【解析】

(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學生數(shù),繼而求得扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角;(2)利用樣本估計總體的方法,即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好抽到女生A的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調(diào)查的學生共有:30÷50%=60(人);∵了解部分的人數(shù)為60﹣(15+30+10)=5,∴扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為:×360°=30°;故答案為60,30;(2)根據(jù)題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為300人,故答案為300;(3)畫樹狀圖如下:所有等可能的情況有6種,其中抽到女生A的情況有2種,所以P(抽到女生A)==.【點睛】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖與扇形統(tǒng)計圖.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、(1)拋物線的表達式為;(2);(3)P點的坐標是.【解析】

分析:(1)由題意易得點A、C的坐標分別為(-1,0),(0,1),將這兩點坐標代入拋物線列出方程組,解得b、c的值即可求得拋物線的解析式;(2)如下圖,作PH⊥AC于H,連接OP,由已知條件先求得PC=2,AC=,結(jié)合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,結(jié)合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,這樣在Rt△APH中由tan∠PAC=即可求得所求答案了;(3)如圖,當四邊形AOPQ為符合要求的平行四邊形時,則此時PQ=AO=1,且點P、Q關(guān)于拋物線的對稱軸x=-1對稱,由此可得點P的橫坐標為-3,代入拋物線解析即可求得此時的點P的坐標.詳解:(1)∵直線y=x+1經(jīng)過點A、C,點A在x軸上,點C在y軸上∴A點坐標是(﹣1,0),點C坐標是(0,1),又∵拋物線過A,C兩點,∴解得,∴拋物線的表達式為;(2)作PH⊥AC于H,∵點C、P在拋物線上,CP//AO,C(0,1),A(-1,0)∴P(-2,1),AC=,∴PC=2,,∴PH=,∵A(﹣1,0),C(0,1),∴∠CAO=15°.∵CP//AO,∴∠ACP=∠CAO=15°,∵PH⊥AC,∴CH=PH=,∴.∴;(3)∵,∴拋物線的對稱軸為直線,∵以AP,AO為鄰邊的平行四邊形的第四個頂點Q恰好也在拋物線上,∴PQ∥AO,且PQ=AO=1.∵P,Q都在拋物線上,∴P,Q關(guān)于直線對稱,∴P點的橫坐標是﹣3,∵當x=﹣3時,,∴P點的坐標是.點睛:(1)解第2小題的關(guān)鍵是:作出如圖所示的輔助線,構(gòu)造出Rt△APH,并結(jié)合題中的已知條件求出PH和AH的長;(2)解第3小題的關(guān)鍵是:根據(jù)題意畫出符合要求的示意圖,并由PQ∥AO,PQ=AO及P、Q關(guān)于拋物線的對稱軸對稱得到點P的橫坐標.【詳解】請在此輸入詳解!19、(1)50;(2)16;(3)56(4)見解析【解析】

(1)用A等級的頻數(shù)除以它所占的百分比即可得到樣本容量;

(2)用總?cè)藬?shù)分別減去A、B、D等級的人數(shù)得到C等級的人數(shù),然后補全條形圖;(3)用700乘以D等級的百分比可估計該中學八年級學生中體能測試結(jié)果為D等級的學生數(shù);

(4)畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出抽取的兩人恰好都是男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)10÷20%=50(名)答:本次抽樣調(diào)查共抽取了50名學生.(2)50-10-20-4=16(名)答:測試結(jié)果為C等級的學生有16名.圖形統(tǒng)計圖補充完整如下圖所示:(3)700×=56(名)答:估計該中學八年級學生中體能測試結(jié)果為D等級的學生有56名.(4)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中抽取的兩人恰好都是男生的結(jié)果數(shù)為2,

所以抽取的兩人恰好都是男生的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.20、見解析【解析】試題分析:(1),,可得∽,從而得,再根據(jù)∠BDF=∠CDA即可證;(2)由∽,可得,從而可得,再由∽,可得從而得,繼而可得,得到.試題解析:(1)∵,∴,∵,∴∽,∴,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴∽;(2)∵∽,∴,∵,∴,∵∽,∴,∴,∴,∴.【點睛】本題考查了相似三角形的性質(zhì)與判定,能結(jié)合圖形以及已知條件靈活選擇恰當?shù)姆椒ㄟM行證明是關(guān)鍵.21、(1)①見解析;②見解析;(1)1π.【解析】

(1)①利用點平移的坐標規(guī)律,分別畫出點A、B、C的對應點A1、B1、C1的坐標,然后描點可得△A1B1C1;②利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì),分別畫出點A1、B1、C1的對應點A1、B1、C1即可;(1)根據(jù)弧長公式計算.【詳解】(1)①如圖,△A1B1C1為所作;②如圖,△A1B1C1為所作;(1)點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長=【點睛】本題考查了作圖﹣旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應角都相等,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉(zhuǎn)后的圖形.也考查了平移的性質(zhì).22、(1)證明見解析;(2)【解析】

(1)連接OD,根據(jù)角平分線的定義和等腰三角形的性質(zhì)可得∠ADO=∠CAD,即可證明OD//AC,進而可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論