2023-2024學年北京市西城區(qū)第四中學高三適應性調(diào)研考試數(shù)學試題含解析_第1頁
2023-2024學年北京市西城區(qū)第四中學高三適應性調(diào)研考試數(shù)學試題含解析_第2頁
2023-2024學年北京市西城區(qū)第四中學高三適應性調(diào)研考試數(shù)學試題含解析_第3頁
2023-2024學年北京市西城區(qū)第四中學高三適應性調(diào)研考試數(shù)學試題含解析_第4頁
2023-2024學年北京市西城區(qū)第四中學高三適應性調(diào)研考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年北京市西城區(qū)第四中學高三適應性調(diào)研考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.2.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.3.設全集,集合,,則集合()A. B. C. D.4.學業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業(yè)水平測試成績?nèi)鐖D所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人5.已知集合,集合,則A. B.或C. D.6.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.7.設是虛數(shù)單位,則()A. B. C. D.8.已知向量,,,若,則()A. B. C. D.9.已知函數(shù),若,使得,則實數(shù)的取值范圍是()A. B.C. D.10.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.《九章算術》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.12.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.8二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在直四棱柱中,底面是平行四邊形,點是棱的中點,點是棱靠近的三等分點,且三棱錐的體積為2,則四棱柱的體積為______.14.設直線過雙曲線的一個焦點,且與的一條對稱軸垂直,與交于兩點,為的實軸長的2倍,則雙曲線的離心率為.15.某中學數(shù)學競賽培訓班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學成績的平均數(shù)為81,乙組5名同學成績的中位數(shù)為73,則x-y的值為________.16.設數(shù)列的前項和為,且對任意正整數(shù),都有,則___三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,且,.(1)求的值;(2)若求的面積.18.(12分)的內(nèi)角的對邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.19.(12分)已知不等式的解集為.(1)求實數(shù)的值;(2)已知存在實數(shù)使得恒成立,求實數(shù)的最大值.20.(12分)已知函數(shù)(為常數(shù))(Ⅰ)當時,求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實數(shù)的取值范圍.21.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.22.(10分)為了解本學期學生參加公益勞動的情況,某校從初高中學生中抽取100名學生,收集了他們參加公益勞動時間(單位:小時)的數(shù)據(jù),繪制圖表的一部分如表.(1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在的概率:(2)從參加公益勞動時間的學生中抽取3人進行面談,記為抽到高中的人數(shù),求的分布列;(3)當時,高中生和初中生相比,那學段學生平均參加公益勞動時間較長.(直接寫出結(jié)果)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設出的坐標為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結(jié)果.【詳解】設,則∵,∴∴∴為點的軌跡方程∴點的參數(shù)方程為(為參數(shù))則由向量的坐標表達式有:又∵∴故選:D【點睛】考查學生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關點法;④參數(shù)法;⑤待定系數(shù)法2、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構的考查.先明晰算法及流程圖的相關概念,包括選擇結(jié)構、循環(huán)結(jié)構、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學問題,是求和還是求項.3、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.4、D【解析】

根據(jù)題意分別計算出物理等級為,化學等級為的學生人數(shù)以及物理等級為,化學等級為的學生人數(shù),結(jié)合表格中的數(shù)據(jù)進行分析,可得出合適的選項.【詳解】根據(jù)題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變?yōu)椋何锢砘瘜W對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數(shù)最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.5、C【解析】

由可得,解得或,所以或,又,所以,故選C.6、C【解析】

需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設準線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題7、A【解析】

利用復數(shù)的乘法運算可求得結(jié)果.【詳解】由復數(shù)的乘法法則得.故選:A.【點睛】本題考查復數(shù)的乘法運算,考查計算能力,屬于基礎題.8、A【解析】

根據(jù)向量坐標運算求得,由平行關系構造方程可求得結(jié)果.【詳解】,,解得:故選:【點睛】本題考查根據(jù)向量平行關系求解參數(shù)值的問題,涉及到平面向量的坐標運算;關鍵是明確若兩向量平行,則.9、C【解析】試題分析:由題意知,當時,由,當且僅當時,即等號是成立,所以函數(shù)的最小值為,當時,為單調(diào)遞增函數(shù),所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數(shù)的綜合問題.【方法點晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應用、全稱命題與存在命題的應用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關鍵.10、A【解析】

設成立;反之,滿足,但,故選A.11、B【解析】

由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長為2且與底面垂直,因為直三棱柱可以復原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關計算,屬于基礎題.12、B【解析】

建立平面直角坐標系,將已知條件轉(zhuǎn)化為所設未知量的關系式,再將的最小值轉(zhuǎn)化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、12【解析】

由題意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解?!驹斀狻坑深}意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為?!军c睛】本題主要考查了棱柱與棱錐的體積的計算問題,其中解答中正確認識幾何體的結(jié)構特征,合理、恰當?shù)乇硎局彼睦庵忮F的體積是解答本題的關鍵,著重考查了推理與運算能力,以及空間想象能力,屬于中檔試題。14、【解析】

不妨設雙曲線,焦點,令,由的長為實軸的二倍能夠推導出的離心率.【詳解】不妨設雙曲線,焦點,對稱軸,由題設知,因為的長為實軸的二倍,,,,故答案為.【點睛】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問題應先將用有關的一些量表示出來,再利用其中的一些關系構造出關于的等式,從而求出的值.15、【解析】

根據(jù)莖葉圖中的數(shù)據(jù),結(jié)合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學成績的平均數(shù)為,解得;又乙班5名同學的中位數(shù)為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據(jù)莖葉圖計算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡單題.16、【解析】

利用行列式定義,得到與的關系,賦值,即可求出結(jié)果?!驹斀狻坑?,令,得,解得。【點睛】本題主要考查行列式定義的應用。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)3(2)78【解析】試題分析:(1)由兩角和差公式得到,由三角形中的數(shù)值關系得到,進而求得數(shù)值;(2)由三角形的三個角的關系得到,再由正弦定理得到b=15,故面積公式為.解析:(1)在中,由,得為銳角,所以,所以,所以.(2)在三角形中,由,所以,由,由正弦定理,得,所以的面積.18、(1);(2).【解析】

(1)利用正弦定理將邊化角,結(jié)合誘導公式可化簡邊角關系式,求得,根據(jù)可求得結(jié)果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結(jié)果.【詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當且僅當時取等號)即三角形面積的最大值為:【點睛】本題考查解三角形的相關知識,涉及到正弦定理化簡邊角關系式、余弦定理解三角形、三角形面積公式應用、基本不等式求積的最大值、誘導公式的應用等知識,屬于??碱}型.19、(1);(2)4【解析】

(1)分類討論,求解x的范圍,取并集,得到絕對值不等式的解集,即得解;(2)轉(zhuǎn)化原不等式為:,利用均值不等式即得解.【詳解】(1)當時不等式可化為當時,不等式可化為;當時,不等式可化為;綜上不等式的解集為.(2)由(1)有,,,,即而當且僅當:,即,即時等號成立∴,綜上實數(shù)最大值為4.【點睛】本題考查了絕對值不等式的求解與不等式的恒成立問題,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.20、(Ⅰ)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(Ⅱ).【解析】

(Ⅰ)對函數(shù)進行求導,利用導數(shù)判斷函數(shù)的單調(diào)性即可;(Ⅱ)對函數(shù)進行求導,由題意知,為增函數(shù)等價于在區(qū)間恒成立,利用分離參數(shù)法和基本不等式求最值即可求出實數(shù)的取值范圍.【詳解】(Ⅰ)由題意知,函數(shù)的定義域為,當時,,令,得,或,所以,隨的變化情況如下表:遞增遞減遞增的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.(Ⅱ)由題意得在區(qū)間恒成立,即在區(qū)間恒成立.,當且僅當,即時等號成立.所以,所以的取值范圍是.【點睛】本題考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間、利用分離參數(shù)法和基本不等式求最值求參數(shù)的取值范圍;考查運算求解能力和邏輯推理能力;利用導數(shù)把函數(shù)單調(diào)性問題轉(zhuǎn)化為不等式恒成立問題是求解本題的關鍵;屬于中檔題、??碱}型.21、(1);(2)最小值為,此時【解析】

(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標和直角坐標相互轉(zhuǎn)化公式,求得曲線的直角坐標方程.(2)設出的坐標,結(jié)合點到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時點的坐標.【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標方程是(2)設,的最小值就是點到直線的最小距離.設在時,,是最小值,此時,所以,所求最小值為,此時【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標方程轉(zhuǎn)化為直角坐標方程,考查利用圓錐曲線的參數(shù)求最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論