江西省大余縣新城中學(xué)2024年高三考前熱身數(shù)學(xué)試卷含解析_第1頁
江西省大余縣新城中學(xué)2024年高三考前熱身數(shù)學(xué)試卷含解析_第2頁
江西省大余縣新城中學(xué)2024年高三考前熱身數(shù)學(xué)試卷含解析_第3頁
江西省大余縣新城中學(xué)2024年高三考前熱身數(shù)學(xué)試卷含解析_第4頁
江西省大余縣新城中學(xué)2024年高三考前熱身數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省大余縣新城中學(xué)2024年高三考前熱身數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.2.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.3.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①以為直徑的圓與拋物線準(zhǔn)線相離;②直線與直線的斜率乘積為;③設(shè)過點,,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③4.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.5.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設(shè)點位于第一象限),過點,分別作拋物線的準(zhǔn)線的垂線,垂足分別為點,,拋物線的準(zhǔn)線交軸于點,若,則直線的斜率為A.1 B. C. D.6.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)7.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.8.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.09.設(shè),是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則10.已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是()A. B. C. D.11.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減半,六朝才得到其關(guān),要見每朝行里數(shù),請公仔細算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里12.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設(shè)計和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項中與該塔的實際高度最接近的是()A.400米 B.480米C.520米 D.600米二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為偶函數(shù),且當(dāng)時,;當(dāng)時,.關(guān)于函數(shù)的零點,有下列三個命題:①當(dāng)時,存在實數(shù)m,使函數(shù)恰有5個不同的零點;②若,函數(shù)的零點不超過4個,則;③對,,函數(shù)恰有4個不同的零點,且這4個零點可以組成等差數(shù)列.其中,正確命題的序號是_______.14.如圖,己知半圓的直徑,點是弦(包含端點,)上的動點,點在弧上.若是等邊三角形,且滿足,則的最小值為___________.15.已知兩個單位向量滿足,則向量與的夾角為_____________.16.已知全集,,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)若,時,在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當(dāng)時,.18.(12分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.19.(12分)在直角坐標(biāo)系中,圓的參數(shù)方程為:(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,且長度單位相同.(1)求圓的極坐標(biāo)方程;(2)若直線:(為參數(shù))被圓截得的弦長為,求直線的傾斜角.20.(12分)某企業(yè)原有甲、乙兩條生產(chǎn)線,為了分析兩條生產(chǎn)線的效果,先從兩條生產(chǎn)線生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值.該項指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.乙生產(chǎn)線樣本的頻數(shù)分布表質(zhì)量指標(biāo)合計頻數(shù)2184814162100(1)根據(jù)甲生產(chǎn)線樣本的頻率分布直方圖,以從樣本中任意抽取一件產(chǎn)品且為合格品的頻率近似代替從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任意抽取一件產(chǎn)品且為合格品的概率,估計從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件恰有2件為合格品的概率;(2)現(xiàn)在該企業(yè)為提高合格率欲只保留其中一條生產(chǎn)線,根據(jù)上述圖表所提供的數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與生產(chǎn)線有關(guān)?若有90%把握,請從合格率的角度分析保留哪條生產(chǎn)線較好?甲生產(chǎn)線乙生產(chǎn)線合計合格品不合格品合計附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87921.(12分)設(shè)函數(shù)(其中),且函數(shù)在處的切線與直線平行.(1)求的值;(2)若函數(shù),求證:恒成立.22.(10分)已知在中,內(nèi)角所對的邊分別為,若,,且.(1)求的值;(2)求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.2、B【解析】

先判斷命題的真假,進而根據(jù)復(fù)合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應(yīng)用,解題的關(guān)鍵是判斷出命題的真假,難度較易.3、D【解析】

對于①,利用拋物線的定義,利用可判斷;對于②,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標(biāo)表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達定理可得,再由,可用m表示,線段的中垂線與軸的交點(即圓心)橫坐標(biāo)為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點到準(zhǔn)線的距離為,顯然,,三點不共線,則.所以①正確.由題意可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點,的坐標(biāo)分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對稱性可知,,兩點關(guān)于軸對稱,所以過點,,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于較難題.4、D【解析】

根據(jù)框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,

,,,,,結(jié)束循環(huán),故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.5、C【解析】

根據(jù)拋物線定義,可得,,又,所以,所以,設(shè),則,則,所以,所以直線的斜率.故選C.6、D【解析】

求函數(shù)的值域得集合,求定義域得集合,根據(jù)交集和補集的定義寫出運算結(jié)果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點睛】該題考查的是有關(guān)集合的問題,涉及到的知識點有函數(shù)的定義域,函數(shù)的值域,集合的運算,屬于基礎(chǔ)題目.7、A【解析】

根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.8、B【解析】

根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因為即而所以夾角為故選:B【點睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.9、D【解析】試題分析:,,故選D.考點:點線面的位置關(guān)系.10、D【解析】

易知單調(diào)遞增,由可得唯一零點,通過已知可求得,則問題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點為,所以,∴,問題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,∴.故選D.【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.11、C【解析】

設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數(shù)列的某一項的求法,考查等比數(shù)列等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.12、B【解析】

根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺和第二展望臺的距離,進而由比例即可求得該塔的實際高度.【詳解】設(shè)第一展望臺到塔底的高度為米,塔的實際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點睛】本題考查了對中國文化的理解與簡單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】

根據(jù)偶函數(shù)的圖象關(guān)于軸對稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對各個選項進行判斷即可.【詳解】解:當(dāng)時又因為為偶函數(shù)可畫出的圖象,如下所示:可知當(dāng)時有5個不同的零點;故①正確;若,函數(shù)的零點不超過4個,即,與的交點不超過4個,時恒成立又當(dāng)時,在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數(shù)的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③【點睛】本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.14、1【解析】

建系,設(shè),表示出點坐標(biāo),則,根據(jù)的范圍得出答案.【詳解】解:以為原點建立平面坐標(biāo)系如圖所示:則,,,,設(shè),則,,,,,,,顯然當(dāng)取得最大值4時,取得最小值1.故答案為:1.【點睛】本題考查了平面向量的數(shù)量積運算,坐標(biāo)運算,屬于中檔題.15、【解析】

由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數(shù)量積的計算和夾角的計算,意在考查學(xué)生對這些知識的理解掌握水平.16、【解析】

利用集合的補集運算即可求解.【詳解】由全集,,所以.故答案為:【點睛】本題考查了集合的補集運算,需理解補集的概念,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)在上單調(diào)遞減等價于在恒成立,分離參數(shù)即可解決.(2)先對求導(dǎo),化簡后根據(jù)零點存在性定理判斷唯一零點所在區(qū)間,構(gòu)造函數(shù)利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調(diào)遞減.∴,.令,,時,;時,,∴在上為減函數(shù),在上為增函數(shù).∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數(shù).又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數(shù),在上為減函數(shù).∴.又,∴,,.∴.,.∴當(dāng)時,.【點睛】此題考查函數(shù)定區(qū)間上單調(diào),和零點存在性定理等知識點,難點為找到最值后的構(gòu)造函數(shù)求值域,屬于較難題目.18、(1)證明見解析;(2).【解析】

(1)取中點,連接,,證明平面,由線面垂直的性質(zhì)可得;(2)由,即可求得三棱錐的體積.【詳解】解:(1)證明:取中點D,連接,.因為,,所以且,因為,平面,平面,所以平面.又平面,所以;(2)解:因為平面,平面,所以平面平面,過N作于E,則平面,因為平面平面,,平面平面,平面,所以平面,又因為平面,所以,由于,所以所以,所以.【點睛】本題考查線面垂直,考查三棱錐體積的計算,解題的關(guān)鍵是掌握線面垂直的判定與性質(zhì),屬于中檔題.19、(1);(2)或【解析】

(1)消去參數(shù)可得圓的直角坐標(biāo)方程,再根據(jù),,即可得極坐標(biāo)方程;(2)寫出直線的極坐標(biāo)方程為,代入圓的極坐標(biāo)方程,根據(jù)極坐標(biāo)的意義列出等式解出即可.【詳解】(1)圓:,消去參數(shù)得:,即:,∵,,.∴,.(2)∵直線:的極坐標(biāo)方程為,當(dāng)時.即:,∴或.∴或,∴直線的傾斜角為或.【點睛】本題主要考查了參數(shù)方程化為普通方程,直角坐標(biāo)方程化為極坐標(biāo)方程以及極坐標(biāo)的幾何意義,屬于中檔題.20、(1)0.0081(2)見解析,保留乙生產(chǎn)線較好.【解析】

(1)先求出任取一件產(chǎn)品為合格品的頻率,“從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件,恰有2件為合格品”就相當(dāng)于進行5次獨立重復(fù)試驗,恰好發(fā)生2次的概率用二項分布概率即可解決.(2)獨立性檢驗算出的觀測值即可判斷.【詳解】(1)根據(jù)甲生產(chǎn)線樣本的頻率分布直方圖,樣本中任取一件產(chǎn)品為合格品的頻率為:.設(shè)“從甲生產(chǎn)線生

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論