版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省朔州市應(yīng)縣第一中學(xué)2024屆高考仿真卷數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則2.已知是虛數(shù)單位,則復(fù)數(shù)()A. B. C.2 D.3.設(shè)集合(為實數(shù)集),,,則()A. B. C. D.4.把函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,若函數(shù)是偶函數(shù),則實數(shù)的最小值是()A. B. C. D.5.已知函數(shù),當(dāng)時,恒成立,則的取值范圍為()A. B. C. D.6.函數(shù)(且)的圖象可能為()A. B. C. D.7.已知函數(shù)在區(qū)間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.8.已知等比數(shù)列的各項均為正數(shù),設(shè)其前n項和,若(),則()A.30 B. C. D.629.設(shè)為自然對數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.10.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.11.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.12.已知α,β表示兩個不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則________.14.已知,記,則的展開式中各項系數(shù)和為__________.15.已知向量滿足,且,則_________.16.設(shè)為拋物線的焦點,為上互相不重合的三點,且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標(biāo)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當(dāng)直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.18.(12分)已知,函數(shù).(1)若,求的單調(diào)遞增區(qū)間;(2)若,求的值.19.(12分)在直角坐標(biāo)系中,圓的參數(shù)方程為:(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,且長度單位相同.(1)求圓的極坐標(biāo)方程;(2)若直線:(為參數(shù))被圓截得的弦長為,求直線的傾斜角.20.(12分)設(shè)函數(shù)f(x)=x2?4xsinx?4cosx.(1)討論函數(shù)f(x)在[?π,π]上的單調(diào)性;(2)證明:函數(shù)f(x)在R上有且僅有兩個零點.21.(12分)已知橢圓的左、右頂點分別為、,上、下頂點分別為,,為其右焦點,,且該橢圓的離心率為;(Ⅰ)求橢圓的標(biāo)準方程;(Ⅱ)過點作斜率為的直線交橢圓于軸上方的點,交直線于點,直線與橢圓的另一個交點為,直線與直線交于點.若,求取值范圍.22.(10分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知:,:,:.(1)求與的極坐標(biāo)方程(2)若與交于點A,與交于點B,,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用線面平行和垂直的判定定理和性質(zhì)定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當(dāng),且,則與的位置關(guān)系不定,故錯;對于,當(dāng)時,不能判定,故錯;對于,若,且,則與的位置關(guān)系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準確判斷.2、A【解析】
根據(jù)復(fù)數(shù)的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復(fù)數(shù)的基本運算,屬于基礎(chǔ)題.3、A【解析】
根據(jù)集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎(chǔ)題.4、A【解析】
先求出的解析式,再求出的解析式,根據(jù)三角函數(shù)圖象的對稱性可求實數(shù)滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)解析式為,故.令,,解得,.因為為偶函數(shù),故直線為其圖象的對稱軸,令,,故,,因為,故,當(dāng)時,.故選:A.【點睛】本題考查三角函數(shù)的圖象變換以及三角函數(shù)的圖象性質(zhì),注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應(yīng)的解析式為,另外,如果為正弦型函數(shù)圖象的對稱軸,則有,本題屬于中檔題.5、A【解析】
分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構(gòu)造函數(shù),結(jié)合的單調(diào)性,不等式等價于,進而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當(dāng)時,等價于,因為,所以.設(shè),由,顯然在上單調(diào)遞增,因為,所以等價于,即,則.設(shè),則.令,解得,易得在上單調(diào)遞增,在上單調(diào)遞減,從而,故.故選:A.【點睛】本題考查了不等式恒成立問題,利用函數(shù)單調(diào)性是解決本題的關(guān)鍵,考查了學(xué)生的推理能力,屬于基礎(chǔ)題.6、D【解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點:1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.7、C【解析】
根據(jù)題意,知當(dāng)時,,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,,,當(dāng)時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應(yīng)用,考查計算能力.8、B【解析】
根據(jù),分別令,結(jié)合等比數(shù)列的通項公式,得到關(guān)于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數(shù)列前n項和公式進行求解即可.【詳解】設(shè)等比數(shù)列的公比為,由題意可知中:.由,分別令,可得、,由等比數(shù)列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數(shù)列的通項公式和前n項和公式的應(yīng)用,考查了數(shù)學(xué)運算能力.9、D【解析】
利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數(shù)值的計算,屬于基礎(chǔ)題.10、C【解析】
根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.11、A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.12、A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由題意先求得的值,可得,再令,可得結(jié)論.【詳解】已知,,,,令,可得,故答案為:1.【點睛】本題主要考查二項式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎(chǔ)題.14、【解析】
根據(jù)定積分的計算,得到,令,求得,即可得到答案.【詳解】根據(jù)定積分的計算,可得,令,則,即的展開式中各項系數(shù)和為.【點睛】本題主要考查了定積分的應(yīng)用,以及二項式定理的應(yīng)用,其中解答中根據(jù)定積分的計算和二項式定理求得的表示是解答本題的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.15、【解析】
由數(shù)量積的運算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運算律是解題關(guān)鍵.16、或【解析】
設(shè)出三點的坐標(biāo),結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進行求解即可.【詳解】拋物線的準線方程為:,設(shè),由拋物線的定義可知:,,,因為、、成等差數(shù)列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點睛】本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)0【解析】
(1)根據(jù)題意,設(shè)直線,與聯(lián)立,得,再由弦長公式,求解.(2)設(shè),根據(jù)直線的斜率為1,則,得到,再由,所以線段中點的縱坐標(biāo)為,然后直線的方程與直線的方程聯(lián)立解得交點H的縱坐標(biāo),說明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯(lián)立得;設(shè),則,解得,故拋物線的方程為.(2),因為直線的斜率為1,則,所以,因為,所以線段中點的縱坐標(biāo)為.直線的方程為,即①直線的方程為,即②聯(lián)立①②解得即點的縱坐標(biāo)為,即直線軸,故直線的斜率為0.如果直線的斜率不存在,結(jié)論也顯然成立,綜上所述,直線的斜率為0.【點睛】本題考查拋物線的方程、直線與拋物線的位置關(guān)系,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.18、(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【詳解】(1)當(dāng)時,,由,得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2),,,,,,.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵,屬中等題.19、(1);(2)或【解析】
(1)消去參數(shù)可得圓的直角坐標(biāo)方程,再根據(jù),,即可得極坐標(biāo)方程;(2)寫出直線的極坐標(biāo)方程為,代入圓的極坐標(biāo)方程,根據(jù)極坐標(biāo)的意義列出等式解出即可.【詳解】(1)圓:,消去參數(shù)得:,即:,∵,,.∴,.(2)∵直線:的極坐標(biāo)方程為,當(dāng)時.即:,∴或.∴或,∴直線的傾斜角為或.【點睛】本題主要考查了參數(shù)方程化為普通方程,直角坐標(biāo)方程化為極坐標(biāo)方程以及極坐標(biāo)的幾何意義,屬于中檔題.20、見解析【解析】
(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當(dāng)x變化時,f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增所以f(x)在區(qū)間,上單調(diào)遞減,在區(qū)間,上單調(diào)遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個零點.顯然x∈(π,2π)時,?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時,f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒有零點.因為f(?x)=(?x)2?4(?x)sin(?x)?4cos(?x)=x2?4xsinx?4cosx=f(x),所以f(x)為偶函數(shù),從而x<?π時,f(x)>1,即f(x)在(?∞,?π)上也沒有零點.故f(x)僅在,上各有一個零點,即f(x)在R上有且僅有兩個零點.21、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)由題意可得,的坐標(biāo),結(jié)合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設(shè)直線,求得的坐標(biāo),再設(shè)直線,求出點的坐標(biāo),寫出的方程,聯(lián)立與,可求出的坐標(biāo),由,可得關(guān)于的函數(shù)式,由單調(diào)性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標(biāo)準方程為;(Ⅱ)設(shè)直線,則與直線的交點,又,設(shè)直線,聯(lián)立,消可得.解得,,聯(lián)立,得,,直線,聯(lián)立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025下半年貴州省安順市關(guān)嶺縣鄉(xiāng)鎮(zhèn)事業(yè)單位歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年湖南懷化市衛(wèi)生健康委員會所屬事業(yè)單位招聘9人高頻重點提升(共500題)附帶答案詳解
- 2025下半年浙江溫州永嘉縣事業(yè)單位招聘(選調(diào))49人高頻重點提升(共500題)附帶答案詳解
- 2025下半年廣東江門開平市事業(yè)單位招聘職員128人歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川省綿陽涪城區(qū)事業(yè)單位招聘6人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上海申通地鐵建設(shè)集團限公司建設(shè)管理專業(yè)技術(shù)人員招聘高頻重點提升(共500題)附帶答案詳解
- 2025上半年福建泉州市直政府系統(tǒng)事業(yè)單位招考擬聘用人員5高頻重點提升(共500題)附帶答案詳解
- 2025上半年江蘇省蘇州吳中高新區(qū)招聘17人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年山東特檢集團招聘35人高頻重點提升(共500題)附帶答案詳解
- 2024年白酒購銷合作標(biāo)準合同模板版
- 《食品安全知識》課件
- 婚禮籌備日程表完整版(表格版)
- 大中小學(xué)思政課一體化背景下初中“道法課”教學(xué)優(yōu)化研究
- 03K132 風(fēng)管支吊架圖集
- ERAS理念下疼痛管理
- 國家安全教育學(xué)習(xí)通章節(jié)答案期末考試題庫2023年
- 習(xí)近平總書記關(guān)于教育的重要論述研究(安慶師范大學(xué)版)學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 廣東省2023年第一次普通高中學(xué)業(yè)水平合格性考試歷史試題及答案
- 中國石化hse管理體系手冊
- 一種全自動連續(xù)紙燙金機的制作方法
- 蘇少2011版二年級美術(shù)上冊《青花盤》評課稿
評論
0/150
提交評論