版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
貴州省銅仁市重點(diǎn)中學(xué)2024年高三考前熱身數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,則元素個(gè)數(shù)為()A.1 B.2 C.3 D.42.設(shè)函數(shù)若關(guān)于的方程有四個(gè)實(shí)數(shù)解,其中,則的取值范圍是()A. B. C. D.3.已知,,若,則實(shí)數(shù)的值是()A.-1 B.7 C.1 D.1或74.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.5.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.46.設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.7.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.18.若直線與曲線相切,則()A.3 B. C.2 D.9.已知,為兩條不同直線,,,為三個(gè)不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號(hào)為()A.②③ B.②③④ C.①④ D.①②③10.已知函數(shù),若曲線上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.11.劉徽是我國(guó)魏晉時(shí)期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對(duì)勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類,因就其余不移動(dòng)也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長(zhǎng)為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個(gè)點(diǎn),此點(diǎn)取自朱方的概率為()A. B. C. D.12.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知過點(diǎn)的直線與函數(shù)的圖象交于、兩點(diǎn),點(diǎn)在線段上,過作軸的平行線交函數(shù)的圖象于點(diǎn),當(dāng)∥軸,點(diǎn)的橫坐標(biāo)是14.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到一個(gè)偶函數(shù)圖象,則________.15.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》對(duì)立體幾何有深入的研究,從其中一些數(shù)學(xué)用語可見,譬如“憋臑”意指四個(gè)面都是直角三角形的三棱錐.某“憋臑”的三視圖(圖中網(wǎng)格紙上每個(gè)小正方形的邊長(zhǎng)為1)如圖所示,已知幾何體高為,則該幾何體外接球的表面積為__________.16.點(diǎn)在雙曲線的右支上,其左、右焦點(diǎn)分別為、,直線與以坐標(biāo)原點(diǎn)為圓心、為半徑的圓相切于點(diǎn),線段的垂直平分線恰好過點(diǎn),則該雙曲線的漸近線的斜率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)棉花的纖維長(zhǎng)度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取21根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長(zhǎng)度不低于311的為“長(zhǎng)纖維”,其余為“短纖維”)纖維長(zhǎng)度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過1.125的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.甲地乙地總計(jì)長(zhǎng)纖維短纖維總計(jì)附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長(zhǎng)度是否為“長(zhǎng)纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測(cè),在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.18.(12分)在銳角中,分別是角的對(duì)邊,,,且.(1)求角的大??;(2)求函數(shù)的值域.19.(12分)某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季進(jìn)了160盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開學(xué)季利潤(rùn)不少于4800元的概率.20.(12分)已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足:,,求的通項(xiàng)公式;(3)在第(2)問的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;21.(12分)已知橢圓的焦點(diǎn)在軸上,且順次連接四個(gè)頂點(diǎn)恰好構(gòu)成了一個(gè)邊長(zhǎng)為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點(diǎn)的直線交于、兩點(diǎn),若對(duì)滿足條件的任意直線,不等式恒成立,求的最小值.22.(10分)在中,角的對(duì)邊分別為,且滿足.(Ⅰ)求角的大??;(Ⅱ)若的面積為,,求和的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
作出兩集合所表示的點(diǎn)的圖象,可得選項(xiàng).【詳解】由題意得,集合A表示以原點(diǎn)為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點(diǎn),作出兩集合所表示的點(diǎn)的示意圖如下圖所示,得出兩個(gè)圖象有兩個(gè)交點(diǎn):點(diǎn)A和點(diǎn)B,所以兩個(gè)集合有兩個(gè)公共元素,所以元素個(gè)數(shù)為2,故選:B.【點(diǎn)睛】本題考查集合的交集運(yùn)算,關(guān)鍵在于作出集合所表示的點(diǎn)的圖象,再運(yùn)用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.2、B【解析】
畫出函數(shù)圖像,根據(jù)圖像知:,,,計(jì)算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,畫出圖像是解題的關(guān)鍵.3、C【解析】
根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算,化簡(jiǎn)即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運(yùn)算,代入化簡(jiǎn)可得.∴解得.故選:C.【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.4、A【解析】
用排除法,通過函數(shù)圖像的性質(zhì)逐個(gè)選項(xiàng)進(jìn)行判斷,找出不符合函數(shù)解析式的圖像,最后剩下即為此函數(shù)的圖像.【詳解】設(shè),由于,排除B選項(xiàng);由于,所以,排除C選項(xiàng);由于當(dāng)時(shí),,排除D選項(xiàng).故A選項(xiàng)正確.故選:A【點(diǎn)睛】本題考查了函數(shù)圖像的性質(zhì),屬于中檔題.5、A【解析】
由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個(gè)焦距為,由題意又,則,,,所以離心率,故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題6、B【解析】
由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因?yàn)樗倪呅螢榱庑?,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點(diǎn)睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.7、C【解析】
利用復(fù)數(shù)的四則運(yùn)算可得,即可得答案.【詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、虛部概念,考查運(yùn)算求解能力,屬于基礎(chǔ)題.8、A【解析】
設(shè)切點(diǎn)為,對(duì)求導(dǎo),得到,從而得到切線的斜率,結(jié)合直線方程的點(diǎn)斜式化簡(jiǎn)得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點(diǎn)為,∵,∴由①得,代入②得,則,,故選A.【點(diǎn)睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,直線方程的點(diǎn)斜式,屬于簡(jiǎn)單題目.9、C【解析】
根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯(cuò)誤;若,,則可能平行,故③錯(cuò)誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.10、D【解析】
根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對(duì)分成三類,利用則,列方程,化簡(jiǎn)后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)椋?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.11、C【解析】
首先明確這是一個(gè)幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因?yàn)檎叫螢橹旆?,其面積為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C【點(diǎn)睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.12、D【解析】
由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構(gòu)造方程求得結(jié)果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點(diǎn)睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關(guān)鍵是明確直線傾斜角與斜率的關(guān)系;易錯(cuò)點(diǎn)是忽略方程表示雙曲線對(duì)于的范圍的要求.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
通過設(shè)出A點(diǎn)坐標(biāo),可得C點(diǎn)坐標(biāo),通過∥軸,可得B點(diǎn)坐標(biāo),于是再利用可得答案.【詳解】根據(jù)題意,可設(shè)點(diǎn),則,由于∥軸,故,代入,可得,即,由于在線段上,故,即,解得.14、【解析】
根據(jù)平移后關(guān)于軸對(duì)稱可知關(guān)于對(duì)稱,進(jìn)而利用特殊值構(gòu)造方程,從而求得結(jié)果.【詳解】向左平移個(gè)單位長(zhǎng)度后得到偶函數(shù)圖象,即關(guān)于軸對(duì)稱關(guān)于對(duì)稱即:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)三角函數(shù)的對(duì)稱軸求解參數(shù)值的問題,關(guān)鍵是能夠通過平移后的對(duì)稱軸得到原函數(shù)的對(duì)稱軸,進(jìn)而利用特殊值的方式來進(jìn)行求解.15、【解析】三視圖還原如下圖:,由于每個(gè)面是直角,顯然外接球球心O在AC的中點(diǎn).所以,,填?!军c(diǎn)睛】三視圖還原,當(dāng)出現(xiàn)三個(gè)尖點(diǎn)在一個(gè)位置時(shí),我們常用“揪尖法”。外接球球心到各個(gè)頂點(diǎn)的距離相等,而直角三角形斜邊上的中點(diǎn)到各頂點(diǎn)的距離相等,所以本題的球心為AC中點(diǎn)。16、【解析】如圖,是切點(diǎn),是的中點(diǎn),因?yàn)?,所以,又,所以,,又,根?jù)雙曲線的定義,有,即,兩邊平方并化簡(jiǎn)得,所以,因此.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在犯錯(cuò)誤概率不超過的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.(2)見解析【解析】試題分析:(1)可以根據(jù)所給表格填出列聯(lián)表,利用列聯(lián)表求出,結(jié)合所給數(shù)據(jù),應(yīng)用獨(dú)立性檢驗(yàn)知識(shí)可作出判斷;(2)寫出的所有可能取值,并求出對(duì)應(yīng)的概率,可列出分布列并進(jìn)一步求出的數(shù)學(xué)期望.試題解析:(Ⅰ)根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表:甲地乙地總計(jì)長(zhǎng)纖維91625短纖維11415總計(jì)212141根據(jù)列聯(lián)表中的數(shù)據(jù),可得所以,在犯錯(cuò)誤概率不超過的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.(Ⅱ)由表可知在8根中乙地“短纖維”的根數(shù)為,的可能取值為:1,1,2,3,,,,.∴的分布列為:1123∴.18、(1);(2)【解析】
(1)由向量平行的坐標(biāo)表示、正弦定理邊化角和兩角和差正弦公式可化簡(jiǎn)求得,進(jìn)而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡(jiǎn)函數(shù)為,根據(jù)的范圍可確定的范圍,結(jié)合正弦函數(shù)圖象可確定所求函數(shù)的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數(shù)的值域?yàn)椋军c(diǎn)睛】本題考查三角恒等變換、解三角形和三角函數(shù)性質(zhì)的綜合應(yīng)用問題;涉及到共線向量的坐標(biāo)表示、利用三角恒等變換公式化簡(jiǎn)求值、正弦定理邊化角的應(yīng)用、正弦型函數(shù)值域的求解等知識(shí).19、(1),眾數(shù)為150;(2);(3)【解析】
(1)由頻率直方圖分別求出各組距內(nèi)的頻率,由此能求出這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量的眾數(shù)和平均數(shù);(2)由已知條件推導(dǎo)出當(dāng)時(shí),,當(dāng)時(shí),,由此能將表示為的函數(shù);(3)利用頻率分布直方圖能求出利潤(rùn)不少于4800元的概率.【詳解】(1)由直方圖可估計(jì)需求量的眾數(shù)為150,由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:∴估計(jì)需求量的平均數(shù)為:(2)當(dāng)時(shí),當(dāng)時(shí),∴(3)由(2)知當(dāng)時(shí),當(dāng)時(shí),得∴開學(xué)季利潤(rùn)不少于4800元的需求量為由頻率分布直方圖可所求概率【點(diǎn)睛】本題考查頻率分布直方圖的應(yīng)用,考查函數(shù)解析式的求法,考查概率的估計(jì),是中檔題,解題時(shí)要注意頻率分布直方圖的合理運(yùn)用.20、(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)【解析】
(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.(3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當(dāng)時(shí),,當(dāng)時(shí),也滿足上式.所以.(2)解法一:由(1)可知,即.當(dāng)時(shí),,①當(dāng)時(shí),,所以,②當(dāng)時(shí),,③當(dāng)時(shí),,所以,④……當(dāng)時(shí),n為偶數(shù)當(dāng)時(shí),n為偶數(shù)所以以上個(gè)式子相加,得.又,所以當(dāng)n為偶數(shù)時(shí),.同理,當(dāng)n為奇數(shù)時(shí),,所以,當(dāng)n為奇數(shù)時(shí),.解法二:猜測(cè):當(dāng)n為奇數(shù)時(shí),.猜測(cè):當(dāng)n為偶數(shù)時(shí),.以下用數(shù)學(xué)歸納法證明:,命題成立;假設(shè)當(dāng)時(shí),命題成立;當(dāng)n為奇數(shù)時(shí),,當(dāng)時(shí),n為偶數(shù),由得故,時(shí),命題也成立.綜上可知,當(dāng)n為奇數(shù)時(shí)同理,當(dāng)n為偶數(shù)時(shí),命題仍成立.(3)由(2)可知.①當(dāng)n為偶數(shù)時(shí),,所以隨n的增大而減小從而當(dāng)n為偶數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024月明玉12FMB10718PM高端酒店裝修設(shè)計(jì)與施工合同3篇
- 2024建筑工程施工安全培訓(xùn)合同
- 保健品開發(fā)合同
- 二零二五年度圍欄安裝與環(huán)保材料研發(fā)應(yīng)用合同3篇
- 2024年職工停薪留職期間離職手續(xù)辦理合同3篇
- 醫(yī)療健康行業(yè)保密免責(zé)協(xié)議書
- IT行業(yè)企業(yè)信息化管理系統(tǒng)開發(fā)方案
- 《儒林外史》試題含答案
- 簡(jiǎn)單詞考研英語5500單詞表
- 農(nóng)產(chǎn)品網(wǎng)絡(luò)銷售質(zhì)量免責(zé)協(xié)議
- 2025年上海市長(zhǎng)寧區(qū)高三語文一模作文解析及范文:激情對(duì)于行動(dòng)是利大于弊嗎
- 晉升管理制度(30篇)
- 2024信息技術(shù)應(yīng)用創(chuàng)新信息系統(tǒng)適配改造成本度量
- 廣東省廣州市2025屆高三上學(xué)期12月調(diào)研測(cè)試(零模)英語 含解析
- 陜西測(cè)繪地理信息局所屬事業(yè)單位2025年上半年招聘87人和重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 保險(xiǎn)學(xué)期末試題及答案
- 高一數(shù)學(xué)上學(xué)期期末模擬試卷01-【中職專用】2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期(高教版2023基礎(chǔ)模塊)(解析版)
- 嚴(yán)重精神障礙患者隨訪服務(wù)記錄表
- 2024-2025學(xué)年人教版八年級(jí)上冊(cè)地理期末測(cè)試卷(一)(含答案)
- 統(tǒng)編版(2024新版)七年級(jí)上冊(cè)道德與法治第四單元綜合測(cè)試卷(含答案)
- 滬教版英語小學(xué)六年級(jí)上學(xué)期期末試題與參考答案(2024-2025學(xué)年)
評(píng)論
0/150
提交評(píng)論