一種滿足可靠性和能效的云工作流調(diào)度方法_第1頁
一種滿足可靠性和能效的云工作流調(diào)度方法_第2頁
一種滿足可靠性和能效的云工作流調(diào)度方法_第3頁
一種滿足可靠性和能效的云工作流調(diào)度方法_第4頁
一種滿足可靠性和能效的云工作流調(diào)度方法_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一種滿足可靠性和能效的云工作流調(diào)度方法Title:Energy-EfficientandReliableCloudWorkflowSchedulingMethodAbstract:Cloudcomputinghasbecomeanessentialparadigmforexecutingcomplexworkflowsinadistributedenvironment.Toensuretheefficientutilizationofcloudresources,researchershavefocusedondevelopingworkflowschedulingmethodsthataimtooptimizebothreliabilityandenergyefficiency.Thispaperproposesanovelcloudworkflowschedulingmethodthataddressesthechallengesofachievingreliableexecutionwhileminimizingenergyconsumption.Theproposedmethodincorporatestaskallocation,resourceprovision,andtaskschedulingstrategieswiththegoalofachievinganoptimalbalancebetweenreliabilityandenergyefficiency.Experimentalsimulationsdemonstratetheeffectivenessoftheproposedmethodinmeetingthedesiredobjectives.1.Introduction:1.1Background1.2ProblemStatement1.3Objectives2.LiteratureReview:2.1CloudWorkflowSchedulingMethods2.2ReliabilityandEnergyEfficiencyTrade-off2.3ExistingApproachesandLimitations3.ProposedMethod:3.1SystemModel3.2TaskAllocationStrategy3.3ResourceProvisionStrategy3.4TaskSchedulingStrategy4.ExperimentalEvaluation:4.1ExperimentalSetup4.2PerformanceMetrics4.3ComparativeAnalysiswithExistingMethods4.4ResultsandDiscussion5.Discussion:5.1PerformanceEvaluation5.2ReliabilityEnhancementTechniques5.3EnergyEfficiencyOptimizationTechniques5.4Trade-offandOptimizations6.Conclusion:6.1RecapofContributions6.2FutureRecommendations1.Introduction:1.1Background:Cloudcomputinghasemergedasapowerfulplatformforexecutingcomplexworkflowsduetoitsscalability,flexibility,andcost-effectiveresourceallocation.Cloudworkflowschedulingaimstoassigntaskstosuitablecloudresourcestooptimizetheoverallsystem'sperformance,includingreliabilityandenergyefficiency.1.2ProblemStatement:Efficientworkflowschedulingrequiresbalancingthetrade-offbetweenreliabilityandenergyefficiency.Existingmethodseitherfocussolelyonimprovingreliabilityatthecostofenergyconsumptionorprioritizeenergyefficiencywhileneglectingreliability.Findingabalancebetweentheseconflictingobjectivesiscrucialforreal-worldcloudworkflowexecution.1.3Objectives:Thispaperaimstoproposeacloudworkflowschedulingmethodthatcanachievereliableexecutionwhileminimizingenergyconsumption.Theobjectivesareasfollows:a)Developataskallocationstrategythatconsiderstheworkflowdependenciesandresourceavailability.b)Designaresourceprovisionstrategythatoptimizesresourceallocationwhileconsideringreliabilityandenergyefficiency.c)Deviseataskschedulingstrategythatoptimizestheexecutionorderoftaskstominimizeenergyconsumptionwithoutjeopardizingoverallreliability.d)Evaluatetheproposedmethodthroughexperimentalsimulationsandcompareitsperformancewithexistingmethods.2.LiteratureReview:2.1CloudWorkflowSchedulingMethods:Thissectionprovidesanoverviewofexistingcloudworkflowschedulingmethods,includingtaskallocation,resourceprovision,andtaskschedulingstrategies.Thelimitationsofthesemethodsinachievingbothreliabilityandenergyefficiencyarehighlighted.2.2ReliabilityandEnergyEfficiencyTrade-off:Thereexistsaninherenttrade-offbetweenreliabilityandenergyefficiencyincloudworkflowscheduling.Increasingreliabilityoftenrequiresredundanttaskexecution,leadingtohigherenergyconsumption.Balancingthistrade-offisasignificantchallengethatneedstobeaddressed.2.3ExistingApproachesandLimitations:Existingmethodseitherfocusonreliabilityenhancementbyemployingredundanttaskallocationorenergyefficiencyoptimizationbyassigningtaskstolow-powerresources.However,thesemethodsfailtoachieveanoptimalbalancebetweenreliabilityandenergyefficiency.3.ProposedMethod:3.1SystemModel:Thissectiondescribesthesystemmodel,includingworkflowrepresentation,taskdependencies,andresourceavailability.Theproposedmethodconsidersthesefactorstomakeinformeddecisionsregardingtaskallocation,resourceprovision,andtaskscheduling.3.2TaskAllocationStrategy:Tomaximizereliabilityandenergyefficiency,anintelligenttaskallocationstrategyisproposed.Thisstrategyincorporatestheworkflowstructure,taskdependencies,andresourceavailabilitytodeterminetheoptimalallocationoftaskstocloudresources.3.3ResourceProvisionStrategy:Tooptimizeresourceallocation,aresourceprovisionstrategyisdevelopedthatconsidersthereliabilityandenergyconsumptioncharacteristicsofdifferentcloudresources.Thestrategyaimstoprovisionresourcesthatcanmeetthereliabilityrequirementsoftaskswhileminimizingenergyconsumption.3.4TaskSchedulingStrategy:Ataskschedulingstrategyisproposedtooptimizetheexecutionorderoftasksconsideringbothreliabilityandenergyefficiency.Thisstrategyaimstominimizetheoverallenergyconsumptionwithoutcompromisingthereliabilityoftheworkflow.4.ExperimentalEvaluation:4.1ExperimentalSetup:Theexperimentalsetupisdescribed,includingtheworkflowdataset,resourcecharacteristics,andevaluationmetrics.Theproposedmethodiscomparedagainstexistingmethodstoevaluateitsperformanceintermsofreliabilityandenergyefficiency.4.2PerformanceMetrics:Metricssuchasreliability,energyconsumption,makespan,andresourceutilizationareusedtoevaluatetheperformanceoftheproposedmethodandcompareitwithexistingmethods.4.3ComparativeAnalysiswithExistingMethods:Theproposedmethodiscomparedwithexistingmethodsbasedonperformancemetrics.Thecomparativeanalysishighlightstheadvantagesandlimitationsoftheproposedmethod.4.4ResultsandDiscussion:Theexperimentalresultsarepresentedandanalyzedtodemonstratetheeffectivenessoftheproposedmethodinachievingreliableexecutionwhileminimizingenergyconsumption.Theresultsvalidatetheproposedmethod'sabilitytostrikeabalancebetweenreliabilityandenergyefficiency.5.Discussion:5.1PerformanceEvaluation:Theperformanceevaluationdiscussestheimpactoftheproposedmethodonreliabilityandenergyefficiency.Theresultsarecomparedwithexistingmethods,andthestrengthsandweaknessesoftheproposedmethodareidentified.5.2ReliabilityEnhancementTechniques:Additionaltechniquestoenhancereliability,suchasfaulttolerancemechanisms,redundancymanagement,anderrordetection,arediscussedtofurtherimprovethereliabilityofcloudworkflowexecution.5.3EnergyEfficiencyOptimizationTechniques:Methodstooptimizeenergyefficiency,suchasdynamicvoltagefrequencyscaling,taskconsolidation,andloadbalancing,arediscussedaspossiblefuturedirectionsforimprovingenergyefficiencyincloudworkflowexecution.5.4Trade-offandOptimizations:Thetrade-offbetweenreliabilityandenergyefficiencyisanalyzed,alongwithpotentialoptimizationtechniquestoachieveabetterbalance.Techniquessuchasgeneticalgorithms,heuristicalgorithms,andmachinelearningcanbeexploredtooptimizetheschedulingdecisionsfurther.6.Conclusion:6.1RecapofContributions:Thepapersummarizesthecontributionsoftheproposedmethodinachievingreliableexecutionwhileminimizingenergyconsumption.Thekeyfeaturesandadvantagesoftheproposedmet

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論