2024屆河北省衡水安平縣聯(lián)考中考數(shù)學(xué)模擬試題含解析_第1頁(yè)
2024屆河北省衡水安平縣聯(lián)考中考數(shù)學(xué)模擬試題含解析_第2頁(yè)
2024屆河北省衡水安平縣聯(lián)考中考數(shù)學(xué)模擬試題含解析_第3頁(yè)
2024屆河北省衡水安平縣聯(lián)考中考數(shù)學(xué)模擬試題含解析_第4頁(yè)
2024屆河北省衡水安平縣聯(lián)考中考數(shù)學(xué)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆河北省衡水安平縣聯(lián)考中考數(shù)學(xué)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.已知關(guān)于x的不等式組至少有兩個(gè)整數(shù)解,且存在以3,a,7為邊的三角形,則a的整數(shù)解有()A.4個(gè) B.5個(gè) C.6個(gè) D.7個(gè)2.二次函數(shù)的圖象如圖所示,則下列各式中錯(cuò)誤的是()A.a(chǎn)bc>0 B.a(chǎn)+b+c>0 C.a(chǎn)+c>b D.2a+b=03.如圖是由幾個(gè)相同的小正方體搭成的一個(gè)幾何體,它的俯視圖是()A.B.C.D.4.把邊長(zhǎng)相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長(zhǎng)LG交AF于點(diǎn)P,則∠APG=()A.141° B.144° C.147° D.150°5.如圖,BD為⊙O的直徑,點(diǎn)A為弧BDC的中點(diǎn),∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°6.下列運(yùn)算正確的是()A.a(chǎn)2?a4=a8 B.2a2+a2=3a4 C.a(chǎn)6÷a2=a3 D.(ab2)3=a3b67.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數(shù)為(

)A.35° B.45° C.55° D.65°8.有6個(gè)相同的立方體搭成的幾何體如圖所示,則它的主視圖是()A. B. C. D.9.圖1和圖2中所有的正方形都全等,將圖1的正方形放在圖2中的①②③④某一位置,所組成的圖形不能?chē)烧襟w的位置是()A.① B.② C.③ D.④10.下列運(yùn)算結(jié)果是無(wú)理數(shù)的是()A.3× B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.直線y=﹣x+1分別交x軸,y軸于A、B兩點(diǎn),則△AOB的面積等于___.12.若關(guān)于x的一元二次方程x2﹣2x+m=0有實(shí)數(shù)根,則m的取值范圍是.13.如圖,正方形ABCD內(nèi)有兩點(diǎn)E、F滿足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,則正方形ABCD的邊長(zhǎng)為_(kāi)____.14.已知關(guān)于x的一元二次方程(a-1)x2-2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是_______________.15.若a,b互為相反數(shù),則a2﹣b2=_____.16.分解因式:_________.三、解答題(共8題,共72分)17.(8分)如圖,已知拋物線的對(duì)稱軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中,.(1)若直線經(jīng)過(guò)、兩點(diǎn),求直線和拋物線的解析式;(2)在拋物線的對(duì)稱軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);(3)設(shè)點(diǎn)為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).18.(8分)(1)解不等式組:;(2)解方程:.19.(8分)閱讀下列材料:數(shù)學(xué)課上老師布置一道作圖題:已知:直線l和l外一點(diǎn)P.求作:過(guò)點(diǎn)P的直線m,使得m∥l.小東的作法如下:作法:如圖2,(1)在直線l上任取點(diǎn)A,連接PA;(2)以點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑作弧,分別交線段PA于點(diǎn)B,直線l于點(diǎn)C;(3)以點(diǎn)P為圓心,AB長(zhǎng)為半徑作弧DQ,交線段PA于點(diǎn)D;(4)以點(diǎn)D為圓心,BC長(zhǎng)為半徑作弧,交弧DQ于點(diǎn)E,作直線PE.所以直線PE就是所求作的直線m.老師說(shuō):“小東的作法是正確的.”請(qǐng)回答:小東的作圖依據(jù)是________.20.(8分)如圖,在平面直角坐標(biāo)系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點(diǎn),AB⊥OA交x軸于點(diǎn)B,且OA=AB.(1)求雙曲線的解析式;(2)求點(diǎn)C的坐標(biāo),并直接寫(xiě)出y1<y2時(shí)x的取值范圍.21.(8分)問(wèn)題提出(1)如圖1,正方形ABCD的對(duì)角線交于點(diǎn)O,△CDE是邊長(zhǎng)為6的等邊三角形,則O、E之間的距離為;問(wèn)題探究(2)如圖2,在邊長(zhǎng)為6的正方形ABCD中,以CD為直徑作半圓O,點(diǎn)P為弧CD上一動(dòng)點(diǎn),求A、P之間的最大距離;問(wèn)題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風(fēng)景線,是因?yàn)楦G洞除了它的堅(jiān)固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點(diǎn)家住延安農(nóng)村的一對(duì)即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門(mén)窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高M(jìn)N=1.2m(N為AD的中點(diǎn),MN⊥AD),小寶說(shuō),門(mén)角B到門(mén)窗弓形弧AD的最大距離是B、M之間的距離.小貝說(shuō)這不是最大的距離,你認(rèn)為誰(shuí)的說(shuō)法正確?請(qǐng)通過(guò)計(jì)算求出門(mén)角B到門(mén)窗弓形弧AD的最大距離.22.(10分)閱讀下面材料:已知:如圖,在正方形ABCD中,邊AB=a1.按照以下操作步驟,可以從該正方形開(kāi)始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關(guān)系,并且一個(gè)比一個(gè)小.操作步驟作法由操作步驟推斷(僅選取部分結(jié)論)第一步在第一個(gè)正方形ABCD的對(duì)角線AC上截取AE=a1,再作EF⊥AC于點(diǎn)E,EF與邊BC交于點(diǎn)F,記CE=a2(i)△EAF≌△BAF(判定依據(jù)是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2為②:第二步以CE為邊構(gòu)造第二個(gè)正方形CEFG;第三步在第二個(gè)正方形的對(duì)角線CF上截取FH=a2,再作IH⊥CF于點(diǎn)H,IH與邊CE交于點(diǎn)I,記CH=a3:(iv)用只含a1的式子表示a3為③:第四步以CH為邊構(gòu)造第三個(gè)正方形CHIJ這個(gè)過(guò)程可以不斷進(jìn)行下去.若第n個(gè)正方形的邊長(zhǎng)為an,用只含a1的式子表示an為④請(qǐng)解決以下問(wèn)題:(1)完成表格中的填空:①;②;③;④;(2)根據(jù)以上第三步、第四步的作法畫(huà)出第三個(gè)正方形CHIJ(不要求尺規(guī)作圖).23.(12分)如圖,吊車(chē)在水平地面上吊起貨物時(shí),吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計(jì)算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)當(dāng)?shù)醣鄣撞緼與貨物的水平距離AC為5m時(shí),吊臂AB的長(zhǎng)為m.(2)如果該吊車(chē)吊臂的最大長(zhǎng)度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長(zhǎng)度與貨物的高度忽略不計(jì))24.如圖,在△ABC中,AB=AC,點(diǎn),在邊上,.求證:.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

依據(jù)不等式組至少有兩個(gè)整數(shù)解,即可得到a>5,再根據(jù)存在以3,a,7為邊的三角形,可得4<a<10,進(jìn)而得出a的取值范圍是5<a<10,即可得到a的整數(shù)解有4個(gè).【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個(gè)整數(shù)解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數(shù)解有4個(gè),故選:A.【點(diǎn)睛】此題考查的是一元一次不等式組的解法和三角形的三邊關(guān)系的運(yùn)用,求不等式組的解集應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.2、B【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】解:由圖象可知拋物線開(kāi)口向上,∴,∵對(duì)稱軸為,∴,∴,∴,故D正確,又∵拋物線與y軸交于y軸的負(fù)半軸,∴,∴,故A正確;當(dāng)x=1時(shí),,即,故B錯(cuò)誤;當(dāng)x=-1時(shí),即,∴,故C正確,故答案為:B.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,解題的關(guān)鍵是熟練掌握二次函數(shù)各系數(shù)的意義以及二次函數(shù)的圖象與性質(zhì).3、D【解析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個(gè)正方形,右上角是1個(gè)正方形,故選D.考點(diǎn):簡(jiǎn)單組合體的三視圖4、B【解析】

先根據(jù)多邊形的內(nèi)角和公式分別求得正六邊形和正五邊形的每一個(gè)內(nèi)角的度數(shù),再根據(jù)多邊形的內(nèi)角和公式求得∠APG的度數(shù).【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點(diǎn)睛】本題考查了多邊形內(nèi)角與外角,關(guān)鍵是熟悉多邊形內(nèi)角和定理:(n﹣2)?180(n≥3)且n為整數(shù)).5、A【解析】

根據(jù)∠ABD=35°就可以求出的度數(shù),再根據(jù),可以求出,因此就可以求得的度數(shù),從而求得∠DBC【詳解】解:∵∠ABD=35°,∴的度數(shù)都是70°,∵BD為直徑,∴的度數(shù)是180°﹣70°=110°,∵點(diǎn)A為弧BDC的中點(diǎn),∴的度數(shù)也是110°,∴的度數(shù)是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.【點(diǎn)睛】本題考查了等腰三角形性質(zhì)、圓周角定理,主要考查學(xué)生的推理能力.6、D【解析】根據(jù)同底數(shù)冪的乘法,合并同類(lèi)項(xiàng),同底數(shù)冪的除法,冪的乘方與積的乘方運(yùn)算法則逐一計(jì)算作出判斷:A、a2?a4=a6,故此選項(xiàng)錯(cuò)誤;B、2a2+a2=3a2,故此選項(xiàng)錯(cuò)誤;C、a6÷a2=a4,故此選項(xiàng)錯(cuò)誤;D、(ab2)3=a3b6,故此選項(xiàng)正確..故選D.考點(diǎn):同底數(shù)冪的乘法,合并同類(lèi)項(xiàng),同底數(shù)冪的除法,冪的乘方與積的乘方.7、C【解析】分析:由同弧所對(duì)的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對(duì)的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點(diǎn)睛:本題考查了同弧所對(duì)的圓周角相等以及直徑所對(duì)的圓周角是直角等知識(shí).8、C【解析】試題分析:根據(jù)主視圖是從正面看得到的圖形,可得答案.解:從正面看第一層三個(gè)小正方形,第二層左邊一個(gè)小正方形,右邊一個(gè)小正方形.故選C.考點(diǎn):簡(jiǎn)單組合體的三視圖.9、A【解析】

由平面圖形的折疊及正方體的表面展開(kāi)圖的特點(diǎn)解題.【詳解】將圖1的正方形放在圖2中的①的位置出現(xiàn)重疊的面,所以不能?chē)烧襟w,故選A.【點(diǎn)睛】本題考查了展開(kāi)圖折疊成幾何體,解題時(shí)勿忘記四棱柱的特征及正方體展開(kāi)圖的各種情形.注意:只要有“田”字格的展開(kāi)圖都不是正方體的表面展開(kāi)圖.10、B【解析】

根據(jù)二次根式的運(yùn)算法則即可求出答案.【詳解】A選項(xiàng):原式=3×2=6,故A不是無(wú)理數(shù);B選項(xiàng):原式=,故B是無(wú)理數(shù);C選項(xiàng):原式==6,故C不是無(wú)理數(shù);D選項(xiàng):原式==12,故D不是無(wú)理數(shù)故選B.【點(diǎn)睛】考查二次根式的運(yùn)算,解題的關(guān)鍵是熟練運(yùn)用二次根式的運(yùn)算法則,本題屬于基礎(chǔ)題型.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、.【解析】

先求得直線y=﹣x+1與x軸,y軸的交點(diǎn)坐標(biāo),再根據(jù)三角形的面積公式求得△AOB的面積即可.【詳解】∵直線y=﹣x+1分別交x軸、y軸于A、B兩點(diǎn),∴A、B點(diǎn)的坐標(biāo)分別為(1,0)、(0,1),S△AOB=OA?OB=×1×1=,故答案為.【點(diǎn)睛】本題考查了直線與坐標(biāo)軸的交點(diǎn)坐標(biāo)及三角形的面積公式,正確求得直線y=﹣x+1與x軸、y軸的交點(diǎn)坐標(biāo)是解決問(wèn)題的關(guān)鍵.12、m≤1.【解析】試題分析:由題意知,△=4﹣4m≥0,∴m≤1.故答案為m≤1.考點(diǎn):根的判別式.13、【解析】分析:連接AC,交EF于點(diǎn)M,可證明△AEM∽△CMF,根據(jù)條件可求得AE、EM、FM、CF,再結(jié)合勾股定理可求得AB.詳解:連接AC,交EF于點(diǎn)M,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴,∵AE=1,EF=FC=3,∴,∴EM=,F(xiàn)M=,在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,∴AC=AM+CM=5,在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,∴AB=,即正方形的邊長(zhǎng)為.故答案為:.點(diǎn)睛:本題主要考查相似三角形的判定和性質(zhì)及正方形的性質(zhì),構(gòu)造三角形相似利用相似三角形的對(duì)應(yīng)邊成比例求得AC的長(zhǎng)是解題的關(guān)鍵,注意勾股定理的應(yīng)用.14、a<2且a≠1.【解析】

利用一元二次方程根的判別式列不等式,解不等式求出a的取值范圍.【詳解】試題解析:∵關(guān)于x的一元二次方程(a-1)x2-2x+l=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解這個(gè)不等式得,a<2,又∵二次項(xiàng)系數(shù)是(a-1),∴a≠1.故a的取值范圍是a<2且a≠1.【點(diǎn)睛】本題考查的是一元二次方程根的判別式,根據(jù)方程有兩不等的實(shí)數(shù)根,得到判別式大于零,求出a的取值范圍,同時(shí)方程是一元二次方程,二次項(xiàng)系數(shù)不為零.15、1【解析】【分析】直接利用平方差公式分解因式進(jìn)而結(jié)合相反數(shù)的定義分析得出答案.【詳解】∵a,b互為相反數(shù),∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點(diǎn)睛】本題考查了公式法分解因式以及相反數(shù)的定義,正確分解因式是解題關(guān)鍵.16、【解析】先提取公因式b,再利用完全平方公式進(jìn)行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)三、解答題(共8題,共72分)17、(1)拋物線的解析式為,直線的解析式為.(2);(3)的坐標(biāo)為或或或.【解析】分析:(1)先把點(diǎn)A,C的坐標(biāo)分別代入拋物線解析式得到a和b,c的關(guān)系式,再根據(jù)拋物線的對(duì)稱軸方程可得a和b的關(guān)系,再聯(lián)立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點(diǎn)的坐標(biāo)代入直線y=mx+n,解方程組求出m和n的值即可得到直線解析式;(2)設(shè)直線BC與對(duì)稱軸x=-1的交點(diǎn)為M,此時(shí)MA+MC的值最小.把x=-1代入直線y=x+3得y的值,即可求出點(diǎn)M坐標(biāo);(3)設(shè)P(-1,t),又因?yàn)锽(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三種情況分別討論求出符合題意t值即可求出點(diǎn)P的坐標(biāo).詳解:(1)依題意得:,解得:,∴拋物線的解析式為.∵對(duì)稱軸為,且拋物線經(jīng)過(guò),∴把、分別代入直線,得,解之得:,∴直線的解析式為.(2)直線與對(duì)稱軸的交點(diǎn)為,則此時(shí)的值最小,把代入直線得,∴.即當(dāng)點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小時(shí)的坐標(biāo)為.(注:本題只求坐標(biāo)沒(méi)說(shuō)要求證明為何此時(shí)的值最小,所以答案未證明的值最小的原因).(3)設(shè),又,,∴,,,①若點(diǎn)為直角頂點(diǎn),則,即:解得:,②若點(diǎn)為直角頂點(diǎn),則,即:解得:,③若點(diǎn)為直角頂點(diǎn),則,即:解得:,.綜上所述的坐標(biāo)為或或或.點(diǎn)睛:本題綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法求函數(shù)(二次函數(shù)和一次函數(shù))的解析式、利用軸對(duì)稱性質(zhì)確定線段的最小長(zhǎng)度、難度不是很大,是一道不錯(cuò)的中考?jí)狠S題.18、(1)﹣2≤x<2;(2)x=.【解析】

(1)先求出不等式組中每個(gè)不等式的解集,再求出不等式組的解集即可;(2)先把分式方程轉(zhuǎn)化成整式方程,求出整式方程的解,再進(jìn)行檢驗(yàn)即可.【詳解】(1),∵解不等式①得:x<2,解不等式②得:x≥﹣2,∴不等式組的解集為﹣2≤x<2;(2)方程兩邊都乘以(2x﹣1)(x﹣2)得2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),解得:x=,檢驗(yàn):把x=代入(2x﹣1)(x﹣2)≠0,所以x=是原方程的解,即原方程的解是x=.【點(diǎn)睛】本題考查了解一元一次不等式組和解分式方程,根據(jù)不等式的解集找出不等式組的解集是解(1)的關(guān)鍵,能把分式方程轉(zhuǎn)化成整式方程是解(2)的關(guān)鍵.19、內(nèi)錯(cuò)角相等,兩直線平行【解析】

根據(jù)內(nèi)錯(cuò)角相等,兩直線平行即可判斷.【詳解】∵∠EPA=∠CAP,∴m∥l(內(nèi)錯(cuò)角相等,兩直線平行).故答案為:內(nèi)錯(cuò)角相等,兩直線平行.【點(diǎn)睛】本題考查了作圖﹣復(fù)雜作圖,平行線的判定等知識(shí),解題的關(guān)鍵是熟練掌握五種基本作圖,屬于中考??碱}型.20、(1);(1)C(﹣1,﹣4),x的取值范圍是x<﹣1或0<x<1.【解析】【分析】(1)作高線AC,根據(jù)等腰直角三角形的性質(zhì)和點(diǎn)A的坐標(biāo)的特點(diǎn)得:x=1x﹣1,可得A的坐標(biāo),從而得雙曲線的解析式;(1)聯(lián)立一次函數(shù)和反比例函數(shù)解析式得方程組,解方程組可得點(diǎn)C的坐標(biāo),根據(jù)圖象可得結(jié)論.【詳解】(1)∵點(diǎn)A在直線y1=1x﹣1上,∴設(shè)A(x,1x﹣1),過(guò)A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴;(1)∵,解得:,,∴C(﹣1,﹣4),由圖象得:y1<y1時(shí)x的取值范圍是x<﹣1或0<x<1.【點(diǎn)睛】本題考查了反比例函數(shù)和一次函數(shù)的綜合;熟練掌握通過(guò)求點(diǎn)的坐標(biāo)進(jìn)一步求函數(shù)解析式的方法;通過(guò)觀察圖象,從交點(diǎn)看起,函數(shù)圖象在上方的函數(shù)值大.21、(1);(2);(2)小貝的說(shuō)法正確,理由見(jiàn)解析,.【解析】

(1)連接AC,BD,由OE垂直平分DC可得DH長(zhǎng),易知OH、HE長(zhǎng),相加即可;(2)補(bǔ)全⊙O,連接AO并延長(zhǎng)交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長(zhǎng),易求AP長(zhǎng);(1)小貝的說(shuō)法正確,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過(guò)點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長(zhǎng)交⊙O上端于點(diǎn)P,則此時(shí)B、P之間的距離即為門(mén)角B到門(mén)窗弓形弧AD的最大距離,在Rt△ANO中,設(shè)AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長(zhǎng),易知BP長(zhǎng).【詳解】解:(1)如圖1,連接AC,BD,對(duì)角線交點(diǎn)為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補(bǔ)全⊙O,連接AO并延長(zhǎng)交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小貝的說(shuō)法正確.理由如下,如圖1,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過(guò)點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長(zhǎng)交⊙O上端于點(diǎn)P,則此時(shí)B、P之間的距離即為門(mén)角B到門(mén)窗弓形弧AD的最大距離,由題意知,點(diǎn)N為AD的中點(diǎn),,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,設(shè)AO=r,則ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴門(mén)角B到門(mén)窗弓形弧AD的最大距離為.【點(diǎn)睛】本題考查了圓與多邊形的綜合,涉及了圓的有關(guān)概念及性質(zhì)、等邊三角形的性質(zhì)、正方形和長(zhǎng)方形的性質(zhì)、勾股定理等,靈活的利用兩點(diǎn)之間線段最短,添加輔助線將題中所求最大距離轉(zhuǎn)化為圓外一點(diǎn)到圓上的最大距離是解題的關(guān)鍵.22、(1)①斜邊和一條直角邊分別相等的兩個(gè)直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)見(jiàn)解析.【解析】

(1)①由題意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由題意得AB=AE=a1,AC=a1,則CE=a2=a1﹣a1=(﹣1)a1;③同上可

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論