2023-2024學(xué)年甘肅省天水市重點名校中考數(shù)學(xué)最后一模試卷含解析_第1頁
2023-2024學(xué)年甘肅省天水市重點名校中考數(shù)學(xué)最后一模試卷含解析_第2頁
2023-2024學(xué)年甘肅省天水市重點名校中考數(shù)學(xué)最后一模試卷含解析_第3頁
2023-2024學(xué)年甘肅省天水市重點名校中考數(shù)學(xué)最后一模試卷含解析_第4頁
2023-2024學(xué)年甘肅省天水市重點名校中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年甘肅省天水市重點名校中考數(shù)學(xué)最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米2.現(xiàn)有三張背面完全相同的卡片,正面分別標(biāo)有數(shù)字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機抽取兩張,則這兩張卡片正面數(shù)字之和為正數(shù)的概率是()A. B. C. D.3.正方形ABCD在直角坐標(biāo)系中的位置如圖所示,將正方形ABCD繞點A按順時針方向旋轉(zhuǎn)180°后,C點的坐標(biāo)是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)4.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα5.若關(guān)于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠16.計算36÷(﹣6)的結(jié)果等于()A.﹣6 B.﹣9 C.﹣30 D.67.小強是一位密碼編譯愛好者,在他的密碼手冊中,有這樣一條信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分別對應(yīng)下列六個字:昌、愛、我、宜、游、美,現(xiàn)將(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,結(jié)果呈現(xiàn)的密碼信息可能是()A.我愛美 B.宜晶游 C.愛我宜昌 D.美我宜昌8.如圖,數(shù)軸上表示的是下列哪個不等式組的解集()A. B. C. D.9.如圖,⊙O的半徑為1,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若∠BAC與∠BOC互補,則弦BC的長為()A. B.2 C.3 D.1.510.如圖,若數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),用圓規(guī)在數(shù)軸上畫點C,則與點C對應(yīng)的實數(shù)是()A.2 B.3 C.4 D.511.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.12.的相反數(shù)是()A. B. C.3 D.-3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知x、y是實數(shù)且滿足x2+xy+y2﹣2=0,設(shè)M=x2﹣xy+y2,則M的取值范圍是_____.14.如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+4x與x軸交于點A,點M是x軸上方拋物線上一點,過點M作MP⊥x軸于點P,以MP為對角線作矩形MNPQ,連結(jié)NQ,則對角線NQ的最大值為_________.15.如圖,在平行四邊形中,點在邊上,將沿折疊得到,點落在對角線上.若,,,則的周長為________.16.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與軸相交于點A、B,若其對稱軸為直線x=2,則OB–OA的值為_______.17.如圖,如果四邊形ABCD中,AD=BC=6,點E、F、G分別是AB、BD、AC的中點,那么△EGF面積的最大值為_____.18.圖甲是小明設(shè)計的帶菱形圖案的花邊作品,該作品由形如圖乙的矩形圖案拼接而成(不重疊,無縫隙).圖乙種,,EF=4cm,上下兩個陰影三角形的面積之和為54cm2,其內(nèi)部菱形由兩組距離相等的平行線交叉得到,則該菱形的周長為___cm三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一次函數(shù)y=2x﹣4的圖象與反比例函數(shù)y=的圖象交于A、B兩點,且點A的橫坐標(biāo)為1.(1)求反比例函數(shù)的解析式;(2)點P是x軸上一動點,△ABP的面積為8,求P點坐標(biāo).20.(6分)如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點.求反比例函數(shù)的表達式在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo)求△PAB的面積.21.(6分)(5分)計算:(122.(8分)某中學(xué)為了解學(xué)生平均每天“誦讀經(jīng)典”的時間,在全校范圍內(nèi)隨機抽查了部分學(xué)生進行調(diào)查統(tǒng)計(設(shè)每天的誦讀時間為分鐘),將調(diào)查統(tǒng)計的結(jié)果分為四個等級:Ⅰ級、Ⅱ級、Ⅲ級、Ⅳ級.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:()請補全上面的條形圖.()所抽查學(xué)生“誦讀經(jīng)典”時間的中位數(shù)落在__________級.()如果該校共有名學(xué)生,請你估計該校平均每天“誦讀經(jīng)典”的時間不低于分鐘的學(xué)生約有多少人?23.(8分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長.(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.24.(10分)如圖(1),AB=CD,AD=BC,O為AC中點,過O點的直線分別與AD、BC相交于點M、N,那么∠1與∠2有什么關(guān)系?請說明理由;若過O點的直線旋轉(zhuǎn)至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1與∠2的關(guān)系成立嗎?請說明理由.25.(10分)已知關(guān)于x的方程.(1)當(dāng)該方程的一個根為1時,求a的值及該方程的另一根;(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.26.(12分)如圖,在正方形中,點是對角線上一個動點(不與點重合),連接過點作,交直線于點.作交直線于點,連接.(1)由題意易知,,觀察圖,請猜想另外兩組全等的三角形;;(2)求證:四邊形是平行四邊形;(3)已知,的面積是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由.27.(12分)如圖所示,某小組同學(xué)為了測量對面樓AB的高度,分工合作,有的組員測得兩樓間距離為40米,有的組員在教室窗戶處測得樓頂端A的仰角為30°,底端B的俯角為10°,請你根據(jù)以上數(shù)據(jù),求出樓AB的高度.(精確到0.1米)(參考數(shù)據(jù):sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,≈1.41,≈1.73)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點睛】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關(guān)鍵.2、D【解析】

先找出全部兩張卡片正面數(shù)字之和情況的總數(shù),再先找出全部兩張卡片正面數(shù)字之和為正數(shù)情況的總數(shù),兩者的比值即為所求概率.【詳解】任取兩張卡片,數(shù)字之和一共有﹣3、2、1三種情況,其中和為正數(shù)的有2、1兩種情況,所以這兩張卡片正面數(shù)字之和為正數(shù)的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關(guān)鍵.3、B【解析】試題分析:正方形ABCD繞點A順時針方向旋轉(zhuǎn)180°后,C點的對應(yīng)點與C一定關(guān)于A對稱,A是對稱點連線的中點,據(jù)此即可求解.試題解析:AC=2,則正方形ABCD繞點A順時針方向旋轉(zhuǎn)180°后C的對應(yīng)點設(shè)是C′,則AC′=AC=2,則OC′=3,故C′的坐標(biāo)是(3,0).故選B.考點:坐標(biāo)與圖形變化-旋轉(zhuǎn).4、D【解析】

根據(jù)銳角三角函數(shù)的定義可得結(jié)論.【詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據(jù)銳角三角函數(shù)的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.5、C【解析】

根據(jù)題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關(guān)鍵是熟練掌握:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.6、A【解析】分析:根據(jù)有理數(shù)的除法法則計算可得.詳解:31÷(﹣1)=﹣(31÷1)=﹣1.故選A.點睛:本題主要考查了有理數(shù)的除法,解題的關(guān)鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除.2除以任何一個不等于2的數(shù),都得2.7、C【解析】試題分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因為x﹣y,x+y,a+b,a﹣b四個代數(shù)式分別對應(yīng)愛、我,宜,昌,所以結(jié)果呈現(xiàn)的密碼信息可能是“愛我宜昌”,故答案選C.考點:因式分解.8、B【解析】

根據(jù)數(shù)軸上不等式解集的表示方法得出此不等式組的解集,再對各選項進行逐一判斷即可.【詳解】解:由數(shù)軸上不等式解集的表示方法得出此不等式組的解集為:x≥-3,

A、不等式組的解集為x>-3,故A錯誤;B、不等式組的解集為x≥-3,故B正確;C、不等式組的解集為x<-3,故C錯誤;D、不等式組的解集為-3<x<5,故D錯誤.故選B.【點睛】本題考查的是在數(shù)軸上表示一元一次不等式組的解集,根據(jù)題意得出數(shù)軸上不等式組的解集是解答此題的關(guān)鍵.9、A【解析】分析:作OH⊥BC于H,首先證明∠BOC=120,在Rt△BOH中,BH=OB?sin60°=1×,即可推出BC=2BH=,詳解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB?sin60°=1×=,∴BC=2BH=.故選A.點睛:本題考查三角形的外接圓與外心、銳角三角函數(shù)、垂徑定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線.10、B【解析】

由數(shù)軸上的點A、B分別與實數(shù)﹣1,1對應(yīng),即可求得AB=2,再根據(jù)半徑相等得到BC=2,由此即求得點C對應(yīng)的實數(shù).【詳解】∵數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點C對應(yīng)的實數(shù)是:1+2=3.故選B.【點睛】本題考查了實數(shù)與數(shù)軸,熟記實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系是解決本題的關(guān)鍵.11、A【解析】

根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.【點睛】本題考查了銳角三角函數(shù)的定義,熟記銳角三角函數(shù)的定義內(nèi)容是解題的關(guān)鍵.12、B【解析】先求的絕對值,再求其相反數(shù):根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點到原點的距離是,所以的絕對值是;相反數(shù)的定義是:如果兩個數(shù)只有符號不同,我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),特別地,1的相反數(shù)還是1.因此的相反數(shù)是.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、≤M≤6【解析】

把原式的xy變?yōu)?xy-xy,根據(jù)完全平方公式特點化簡,然后由完全平方式恒大于等于0,得到xy的范圍;再把原式中的xy變?yōu)?2xy+3xy,同理得到xy的另一個范圍,求出兩范圍的公共部分,然后利用不等式的基本性質(zhì)求出2-2xy的范圍,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范圍即為M的范圍.【詳解】由得:即所以由得:即所以∴∴不等式兩邊同時乘以?2得:,即兩邊同時加上2得:即∵∴∴則M的取值范圍是≤M≤6.故答案為:≤M≤6.【點睛】此題考查了完全平方公式,以及不等式的基本性質(zhì),解題時技巧性比較強,對已知的式子進行了三次恒等變形,前兩次利用拆項法拼湊完全平方式,最后一次變形后整體代入確定出M關(guān)于xy的式子,從而求出M的范圍.要求學(xué)生熟練掌握完全平方公式的結(jié)構(gòu)特點:兩數(shù)的平方和加上或減去它們乘積的2倍等于兩數(shù)和或差的平方.14、4【解析】∵四邊形MNPQ是矩形,∴NQ=MP,∴當(dāng)MP最大時,NQ就最大.∵點M是拋物線在軸上方部分圖象上的一點,且MP⊥軸于點P,∴當(dāng)點M是拋物線的頂點時,MP的值最大.∵,∴拋物線的頂點坐標(biāo)為(2,4),∴當(dāng)點M的坐標(biāo)為(2,4)時,MP最大=4,∴對角線NQ的最大值為4.15、6.【解析】

先根據(jù)平行線的性質(zhì)求出BC=AD=5,再根據(jù)勾股定理可得AC=4,然后根據(jù)折疊的性質(zhì)可得AF=AB=3,EF=BE,從而可求出的周長.【詳解】解:∵四邊形是平行四邊形,∴BC=AD=5,∵,∴AC===4∵沿折疊得到,∴AF=AB=3,EF=BE,∴的周長=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案為6.【點睛】本題考查了平行四邊形的性質(zhì),勾股定理,折疊的性質(zhì),三角形的周長計算方法,運用轉(zhuǎn)化思想是解題的關(guān)鍵.16、4【解析】試題分析:設(shè)OB的長度為x,則根據(jù)二次函數(shù)的對稱性可得:點B的坐標(biāo)為(x+2,0),點A的坐標(biāo)為(2-x,0),則OB-OA=x+2-(x-2)=4.點睛:本題主要考查的就是二次函數(shù)的性質(zhì).如果二次函數(shù)與x軸的兩個交點坐標(biāo)為(,0)和(,0),則函數(shù)的對稱軸為直線:x=.在解決二次函數(shù)的題目時,我們一定要注意區(qū)分點的坐標(biāo)和線段的長度之間的區(qū)別,如果點在x的正半軸,則點的橫坐標(biāo)就是線段的長度,如果點在x的負(fù)半軸,則點的橫坐標(biāo)的相反數(shù)就是線段的長度.17、4.1.【解析】

取CD的值中點M,連接GM,F(xiàn)M.首先證明四邊形EFMG是菱形,推出當(dāng)EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,由此可得結(jié)論.【詳解】解:取CD的值中點M,連接GM,F(xiàn)M.∵AG=CG,AE=EB,∴GE是△ABC的中位線∴EG=BC,同理可證:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四邊形EFMG是菱形,∴當(dāng)EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,∴△EGF的面積的最大值為S四邊形EFMG=4.1,故答案為4.1.【點睛】本題主要考查菱形的判定和性質(zhì),利用了三角形中位線定理,掌握菱形的判定:四條邊都相等的四邊形是菱形是解題的關(guān)鍵.18、【解析】試題分析:根據(jù),EF=4可得:AB=和BC的長度,根據(jù)陰影部分的面積為54可得陰影部分三角形的高,然后根據(jù)菱形的性質(zhì)可以求出小菱形的邊長為,則菱形的周長為:×4=.考點:菱形的性質(zhì).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=;(2)(4,0)或(0,0)【解析】

(1)把x=1代入一次函數(shù)解析式求得A的坐標(biāo),利用待定系數(shù)法求得反比例函數(shù)解析式;(2)解一次函數(shù)與反比例函數(shù)解析式組成的方程組求得B的坐標(biāo),后利用△ABP的面積為8,可求P點坐標(biāo).【詳解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=,可得k=1×2=6,∴反比例函數(shù)的解析式為y=;(2)根據(jù)題意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴點B的坐標(biāo)為(﹣1,﹣6).設(shè)直線AB與x軸交于點C,y=2x﹣4中,令y=0,則x=2,即C(2,0),設(shè)P點坐標(biāo)為(x,0),則×|x﹣2|×(2+6)=8,解得x=4或0,∴點P的坐標(biāo)為(4,0)或(0,0).【點睛】本題主要考查用待定系數(shù)法求一次函數(shù)解析式,及一次函數(shù)與反比例函數(shù)交點的問題,聯(lián)立兩函數(shù)可求解。20、(1)反比例函數(shù)的表達式y(tǒng)=,(2)點P坐標(biāo)(,0),(3)S△PAB=1.1.【解析】(1)把點A(1,a)代入一次函數(shù)中可得到A點坐標(biāo),再把A點坐標(biāo)代入反比例解析式中即可得到反比例函數(shù)的表達式;(2)作點D關(guān)于x軸的對稱點D,連接AD交x軸于點P,此時PA+PB的值最小.由B可知D點坐標(biāo),再由待定系數(shù)法求出直線AD的解析式,即可得到點P的坐標(biāo);(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點A(1,a)代入一次函數(shù)y=﹣x+4,得a=﹣1+4,

解得a=3,

∴A(1,3),

點A(1,3)代入反比例函數(shù)y=,

得k=3,

∴反比例函數(shù)的表達式y(tǒng)=,

(2)把B(3,b)代入y=得,b=1∴點B坐標(biāo)(3,1);作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,

∴D(3,﹣1),設(shè)直線AD的解析式為y=mx+n,

把A,D兩點代入得,,

解得m=﹣2,n=1,

∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,

∴點P坐標(biāo)(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點晴:本題是一道一次函數(shù)與反比例函數(shù)的綜合題,并與幾何圖形結(jié)合在一起來求有關(guān)于最值方面的問題.此類問題的重點是在于通過待定系數(shù)法求出函數(shù)圖象的解析式,再通過函數(shù)解析式反過來求坐標(biāo),為接下來求面積做好鋪墊.21、8+23【解析】試題分析:利用負(fù)整數(shù)指數(shù)冪,零指數(shù)冪、絕對值、特殊角的三角函數(shù)值的定義解答.試題解析:原式=9+1-(2-3)+2×3考點:1.實數(shù)的運算;2.零指數(shù)冪;3.負(fù)整數(shù)指數(shù)冪;4.特殊角的三角函數(shù)值.22、)補全的條形圖見解析()Ⅱ級.().【解析】試題分析:(1)根據(jù)Ⅱ級的人數(shù)和所占的百分比即可求出總數(shù),從而求出三級人數(shù),進而補全圖形;(2)把所有同類數(shù)據(jù)按照從小到大的順序排列,中間的數(shù)據(jù)是中位數(shù),則該數(shù)在Ⅱ級.;(3)由樣本估計總體,由于時間不低于的人數(shù)占,故該類學(xué)生約有408人.試題解析:(1)本次隨機抽查的人數(shù)為:20÷40%=50(人).三級人數(shù)為:50-13-20-7=10.補圖如下:(2)把所有同類數(shù)據(jù)按照從小到大的順序排列,中間的數(shù)據(jù)是中位數(shù),則該數(shù)在Ⅱ級.(3)由樣本估計總體,由于時間不低于的人數(shù)占,所以該類學(xué)生約有.23、(1)①證明見解析;②10;(2)線段EF的長度不變,它的長度為25..【解析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=12PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=12QB,再求出EF=12試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=82+42考點:翻折變換(折疊問題);矩形的性質(zhì);相似形綜合題.24、詳見解析.【解析】

(1)根據(jù)全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性質(zhì)得∠DAC=∠BCA,可證AD∥BC,根據(jù)平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論