版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省鐵嶺市昌圖縣2024年中考押題數(shù)學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.通過觀察下面每個圖形中5個實數(shù)的關(guān)系,得出第四個圖形中y的值是()A.8 B.﹣8 C.﹣12 D.122.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:13.一組數(shù)據(jù):1、2、2、3,若添加一個數(shù)據(jù)2,則發(fā)生變化的統(tǒng)計量是A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差4.設x1,x2是一元二次方程x2﹣2x﹣5=0的兩根,則x12+x22的值為()A.6 B.8 C.14 D.165.點A為數(shù)軸上表示-2的動點,當點A沿數(shù)軸移動4個單位長到B時,點B所表示的實數(shù)是()A.1B.-6C.2或-6D.不同于以上答案6.如圖,線段AB是直線y=4x+2的一部分,點A是直線與y軸的交點,點B的縱坐標為6,曲線BC是雙曲線y=的一部分,點C的橫坐標為6,由點C開始不斷重復“A﹣B﹣C”的過程,形成一組波浪線.點P(2017,m)與Q(2020,n)均在該波浪線上,分別過P、Q兩點向x軸作垂線段,垂足為點D和E,則四邊形PDEQ的面積是()A.10 B. C. D.157.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為()A.36 B.12 C.6 D.38.2014年底,國務院召開了全國青少年校園足球工作會議,明確由教育部正式牽頭負責校園足球工作.2018年2月1日,教育部第三場新春系列發(fā)布會上,王登峰司長總結(jié)前三年的工作時提到:校園足球場地,目前全國校園里面有5萬多塊,到2020年要達到85000塊.其中85000用科學記數(shù)法可表示為()A.0.85105 B.8.5104 C.8510-3 D.8.510-49.《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學的重要著作,其中有一道題,原文是:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺.木長幾何?”意思是:用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺,問木頭長多少尺?可設木頭長為x尺,繩子長為y尺,則所列方程組正確的是()A. B. C. D.10.某種植基地2016年蔬菜產(chǎn)量為80噸,預計2018年蔬菜產(chǎn)量達到100噸,求蔬菜產(chǎn)量的年平均增長率,設蔬菜產(chǎn)量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100二、填空題(本大題共6個小題,每小題3分,共18分)11.若代數(shù)式的值不小于代數(shù)式的值,則x的取值范圍是_____.12.如圖,在平面直角坐標系中,點P的坐標為(0,4),直線y=x-3與x軸、y軸分別交于點A、B,點M是直線AB上的一個動點,則PM的最小值為________.13.若二次根式有意義,則x的取值范圍為__________.14.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.15.方程組的解一定是方程_____與_____的公共解.16.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C,D均在格點上,AB與CD相交于點E.(1)AB的長等于_____;(2)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A,D的⊙O分別交AB,AC于點E,F(xiàn),連接OF交AD于點G.求證:BC是⊙O的切線;設AB=x,AF=y(tǒng),試用含x,y的代數(shù)式表示線段AD的長;若BE=8,sinB=,求DG的長,18.(8分)如圖,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法).(2)在(1)條件下,求證:AB2=BD?BC.19.(8分)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠1)中的x與y的部分對應值如表x
﹣1
1
1
3
y
﹣1
3
5
3
下列結(jié)論:①ac<1;②當x>1時,y的值隨x值的增大而減?。?是方程ax2+(b﹣1)x+c=1的一個根;④當﹣1<x<3時,ax2+(b﹣1)x+c>1.其中正確的結(jié)論是.20.(8分)如圖,BD是△ABC的角平分線,點E,F(xiàn)分別在BC,AB上,且DE∥AB,BE=AF.(1)求證:四邊形ADEF是平行四邊形;(2)若∠ABC=60°,BD=6,求DE的長.21.(8分)如圖,在?ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.(1)求證:EF是⊙O的切線;(2)求證:=4BP?QP.22.(10分)兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過點B.求k的值.把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經(jīng)過的路徑長.23.(12分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點放在C處,CP=CQ=2,將三角板CPQ繞點C旋轉(zhuǎn)(保持點P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當三角板CPQ繞點C旋轉(zhuǎn)到點A、P、Q在同一直線時,求AP的長;設射線AP與射線BQ相交于點E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.24.在平面直角坐標系xOy中,拋物線y=ax2+2ax+c(其中a、c為常數(shù),且a<0)與x軸交于點A(﹣3,0),與y軸交于點B,此拋物線頂點C到x軸的距離為1.(1)求拋物線的表達式;(2)求∠CAB的正切值;(3)如果點P是x軸上的一點,且∠ABP=∠CAO,直接寫出點P的坐標.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)前三個圖形中數(shù)字之間的關(guān)系找出運算規(guī)律,再代入數(shù)據(jù)即可求出第四個圖形中的y值.【詳解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故選D.【點睛】本題考查了規(guī)律型中數(shù)字的變化類,根據(jù)圖形中數(shù)與數(shù)之間的關(guān)系找出運算規(guī)律是解題的關(guān)鍵.2、C【解析】
求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,
陰影部分的面積,
空白部分與陰影部分面積之比是::1,
故選C.【點睛】本題考查正多邊形的性質(zhì)、平移變換等知識,解題的關(guān)鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.3、D【解析】
解:A.原來數(shù)據(jù)的平均數(shù)是2,添加數(shù)字2后平均數(shù)仍為2,故A與要求不符;B.原來數(shù)據(jù)的中位數(shù)是2,添加數(shù)字2后中位數(shù)仍為2,故B與要求不符;C.原來數(shù)據(jù)的眾數(shù)是2,添加數(shù)字2后眾數(shù)仍為2,故C與要求不符;D.原來數(shù)據(jù)的方差==,添加數(shù)字2后的方差==,故方差發(fā)生了變化.故選D.4、C【解析】
根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1?x2=-5,再變形x12+x22得到(x1+x2)2-2x1?x2,然后利用代入計算即可.【詳解】∵一元二次方程x2-2x-5=0的兩根是x1、x2,
∴x1+x2=2,x1?x2=-5,
∴x12+x22=(x1+x2)2-2x1?x2=22-2×(-5)=1.
故選C.【點睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程的兩根為x1,x2,則x1+x2=-,x1?x2=.5、C【解析】解:∵點A為數(shù)軸上的表示-1的動點,①當點A沿數(shù)軸向左移動4個單位長度時,點B所表示的有理數(shù)為-1-4=-6;②當點A沿數(shù)軸向右移動4個單位長度時,點B所表示的有理數(shù)為-1+4=1.故選C.點睛:注意數(shù)的大小變化和平移之間的規(guī)律:左減右加.與點A的距離為4個單位長度的點B有兩個,一個向左,一個向右.6、C【解析】
A,C之間的距離為6,點Q與點P的水平距離為3,進而得到A,B之間的水平距離為1,且k=6,根據(jù)四邊形PDEQ的面積為,即可得到四邊形PDEQ的面積.【詳解】A,C之間的距離為6,2017÷6=336…1,故點P離x軸的距離與點B離x軸的距離相同,在y=4x+2中,當y=6時,x=1,即點P離x軸的距離為6,∴m=6,2020﹣2017=3,故點Q與點P的水平距離為3,∵解得k=6,雙曲線1+3=4,即點Q離x軸的距離為,∴∵四邊形PDEQ的面積是.故選:C.【點睛】考查了反比例函數(shù)的圖象與性質(zhì),平行四邊形的面積,綜合性比較強,難度較大.7、D【解析】設△OAC和△BAD的直角邊長分別為a、b,結(jié)合等腰直角三角形的性質(zhì)及圖象可得出點B的坐標,根據(jù)三角形的面積公式結(jié)合反比例函數(shù)系數(shù)k的幾何意義以及點B的坐標即可得出結(jié)論.
解:設△OAC和△BAD的直角邊長分別為a、b,
則點B的坐標為(a+b,a﹣b).∵點B在反比例函數(shù)的第一象限圖象上,
∴(a+b)×(a﹣b)=a2﹣b2=1.
∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.
故選D.點睛:本題主要考查了反比例函數(shù)系數(shù)k的幾何意義、等腰三角形的性質(zhì)以及面積公式,解題的關(guān)鍵是找出a2﹣b2的值.解決該題型題目時,要設出等腰直角三角形的直角邊并表示出面積,再用其表示出反比例函數(shù)上點的坐標是關(guān)鍵.8、B【解析】
根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.在確定n的值時,等于這個數(shù)的整數(shù)位數(shù)減1.【詳解】解:85000用科學記數(shù)法可表示為8.5×104,
故選:B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、A【解析】
根據(jù)“用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺”可以列出相應的方程組,本題得以解決.【詳解】由題意可得,,故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應的方程組.10、A【解析】
利用增長后的量=增長前的量×(1+增長率),設平均每次增長的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產(chǎn)量的年平均增長率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預計2018年蔬菜產(chǎn)量達到100噸,即:80(1+x)2=100,故選A.【點睛】本題考查了一元二次方程的應用(增長率問題).解題的關(guān)鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準等量關(guān)系式,列出方程.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≥【解析】
根據(jù)題意列出不等式,依據(jù)解不等式得基本步驟求解可得.【詳解】解:根據(jù)題意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案為x≥.【點睛】本題主要考查解不等式得基本技能,熟練掌握解一元一次不等式的基本步驟是解題的關(guān)鍵.12、【解析】
認真審題,根據(jù)垂線段最短得出PM⊥AB時線段PM最短,分別求出PB、OB、OA、AB的長度,利用△PBM∽△ABO,即可求出本題的答案【詳解】解:如圖,過點P作PM⊥AB,則:∠PMB=90°,當PM⊥AB時,PM最短,因為直線y=x﹣3與x軸、y軸分別交于點A,B,可得點A的坐標為(4,0),點B的坐標為(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.13、x≥﹣.【解析】
考點:二次根式有意義的條件.根據(jù)二次根式的意義,被開方數(shù)是非負數(shù)求解.解:根據(jù)題意得:1+2x≥0,解得x≥-.故答案為x≥-.14、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,坐標與圖形的性質(zhì),解題的關(guān)鍵是學會添加常用的輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.注意:距離都是非負數(shù),而坐標可以是負數(shù),在由距離求坐標時,需要加上恰當?shù)姆?15、5x﹣3y=83x+8y=9【解析】
方程組的解一定是方程5x﹣3y=8與3x+8y=9的公共解.故答案為5x﹣3y=8;3x+8y=9.16、見圖形【解析】分析:(Ⅰ)利用勾股定理計算即可;(Ⅱ)連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F,因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K,因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3;詳解:(Ⅰ)AB的長==;(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格點G、H,連接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.連接EK交BF于P,可證BP:PF=5:3.故答案為(Ⅰ);(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F.因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3.點睛:本題考查了作圖﹣應用與設計,平行線分線段成比例定理等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,所以中考??碱}型.三、解答題(共8題,共72分)17、(1)證明見解析;(2)AD=;(3)DG=.【解析】
(1)連接OD,由AD為角平分線得到一對角相等,再由等邊對等角得到一對角相等,等量代換得到內(nèi)錯角相等,進而得到OD與AC平行,得到OD與BC垂直,即可得證;
(2)連接DF,由(1)得到BC為圓O的切線,由弦切角等于夾弧所對的圓周角,進而得到三角形ABD與三角形ADF相似,由相似得比例,即可表示出AD;
(3)連接EF,設圓的半徑為r,由sinB的值,利用銳角三角函數(shù)定義求出r的值,由直徑所對的圓周角為直角,得到EF與BC平行,得到sin∠AEF=sinB,進而求出DG的長即可.【詳解】(1)如圖,連接OD,∵AD為∠BAC的角平分線,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC為圓O的切線;(2)連接DF,由(1)知BC為圓O的切線,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴,即AD2=AB?AF=xy,則AD=;(3)連接EF,在Rt△BOD中,sinB=,設圓的半徑為r,可得,解得:r=5,∴AE=10,AB=18,∵AE是直徑,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=,∴AF=AE?sin∠AEF=10×=,∵AF∥OD,∴,即DG=AD,∴AD=,則DG=.【點睛】圓的綜合題,涉及的知識有:切線的判定與性質(zhì),相似三角形的判定與性質(zhì),銳角三角函數(shù)定義,勾股定理,以及平行線的判定與性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.18、(1)作圖見解析;(2)證明見解析;【解析】
(1)①以C為圓心,任意長為半徑畫弧,交CB、CA于E、F;②以A為圓心,CE長為半徑畫弧,交AB于G;③以G為圓心,EF長為半徑畫弧,兩弧交于H;④連接AH并延長交BC于D,則∠BAD=∠C;(2)證明△ABD∽△CBA,然后根據(jù)相似三角形的性質(zhì)得到結(jié)論.【詳解】(1)如圖,∠BAD為所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD?BC.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了相似三角形的判定與性質(zhì).19、①③④.【解析】試題分析:∵x=﹣1時y=﹣1,x=1時,y=3,x=1時,y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正確;對稱軸為直線,所以,當x>時,y的值隨x值的增大而減小,故②錯誤;方程為﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一個根,正確,故③正確;﹣1<x<3時,ax2+(b﹣1)x+c>1正確,故④正確;綜上所述,結(jié)論正確的是①③④.故答案為①③④.【考點】二次函數(shù)的性質(zhì).20、(1)證明見解析;(2).【解析】
(1)由BD是△ABC的角平分線,DE∥AB,可證得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可證得四邊形ADEF是平行四邊形;(2)過點E作EH⊥BD于點H,由∠ABC=60°,BD是∠ABC的平分線,可求得BH的長,從而求得BE、DE的長,即可求得答案.【詳解】(1)證明:∵BD是△ABC的角平分線,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四邊形ADEF是平行四邊形;(2)解:過點E作EH⊥BD于點H.∵∠ABC=60°,BD是∠ABC的平分線,∴∠ABD=∠EBD=30°,∴DH=BD=×6=3,∵BE=DE,∴BH=DH=3,∴BE==,∴DE=BE=.【點睛】此題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及三角函數(shù)等知識.注意掌握輔助線的作法.21、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)連接OE,AE,由AB是⊙O的直徑,得到∠AEB=∠AEC=90°,根據(jù)四邊形ABCD是平行四邊形,得到PA=PC推出∠OEP=∠OAC=90°,根據(jù)切線的判定定理即可得到結(jié)論;(2)由AB是⊙O的直徑,得到∠AQB=90°根據(jù)相似三角形的性質(zhì)得到=PB?PQ,根據(jù)全等三角形的性質(zhì)得到PF=PE,求得PA=PE=EF,等量代換即可得到結(jié)論.試題解析:(1)連接OE,AE,∵AB是⊙O的直徑,∴∠AEB=∠AEC=90°,∵四邊形ABCD是平行四邊形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切線;(2)∵AB是⊙O的直徑,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB?PQ,在△AFP與△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP?QP.考點:切線的判定;平行四邊形的性質(zhì);相似三角形的判定與性質(zhì).22、(1)k=2;(2)點D經(jīng)過的路徑長為.【解析】
(1)根據(jù)題意求得點B的坐標,再代入求得k值即可;(2)設平移后與反比例函數(shù)圖象的交點為D′,由平移性質(zhì)可知DD′∥OB,過D′作D′E⊥x軸于點E,交DC于點F,設CD交y軸于點M(如圖),根據(jù)已知條件可求得點D的坐標為(﹣1,1),設D′橫坐標為t,則OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的長,即可得點D經(jīng)過的路徑長.【詳解】(1)∵△AOB和△COD為全等三的等腰直角三角形,OC=,∴AB=OA=OC=OD=,∴點B坐標為(,),代入得k=2;(2)設平移后與反比例函數(shù)圖象的交點為D′,由平移性質(zhì)可知DD′∥OB,過D′作D′E⊥x軸于點E,交DC于點F,設CD交y軸于點M,如圖,∵OC=OD=,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐標為(﹣1,1),設D′橫坐標為t,則OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函數(shù)圖象上,∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),∴D′(﹣1,+1),∴DD′=,即點D經(jīng)過的路徑長為.【點睛】本題是反比例函數(shù)與幾何的綜合題,求得點D′的坐標是解決第(2)問的關(guān)鍵.23、(1)證明見解析(2)(3)EP+EQ=EC【解析】
(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長;作CM⊥BQ于M,CN⊥EP于N,設BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即可證Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,則可求得EP、EQ、EC之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如圖2中,作CH⊥PQ于H∵A、P、Q共線,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電工基礎(chǔ)與技能訓練》課件-第四章 交流電路的分析-劉鑫尚
- 圖書轉(zhuǎn)庫服務合同
- 《第九章9.1-9》課件.2-9.2新一代人工智能發(fā)展趨勢
- 2025年榆林貨運從業(yè)資格證考試試題及答案
- 2025年西雙版納怎么考貨運從業(yè)資格證
- 2025年西寧貨運從業(yè)資格證考試答案
- 2025年呂梁貨運資格證安檢考試題
- 環(huán)保工程合伙施工協(xié)議合同
- 客戶反饋處理辦法
- 合同部技術(shù)創(chuàng)新計劃
- 接地裝置試驗作業(yè)指導書
- 手術(shù)通知單模板
- 網(wǎng)絡拓撲圖常用圖標新版
- 《互聯(lián)網(wǎng)金融》試題A及參考答案
- artcam2008軟件及使用artcam的安裝和破解
- 企業(yè)微信的使用培訓
- 普外科專科護理規(guī)范及標準
- UML學生成績管理系統(tǒng)
- CA6132普通車床使用說明書
- 工程交工驗收會議監(jiān)理發(fā)言
- 電力工程項目管理中的溝通與協(xié)調(diào)
評論
0/150
提交評論