海北市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)全真模擬試題含解析_第1頁
海北市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)全真模擬試題含解析_第2頁
海北市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)全真模擬試題含解析_第3頁
海北市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)全真模擬試題含解析_第4頁
海北市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

海北市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)全真模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如右圖是用八塊完全相同的小正方體搭成的幾何體,從正面看幾何體得到的圖形是()A. B.C. D.2.下列運(yùn)算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x63.如圖,折疊矩形紙片ABCD的一邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,若AB=8,BC=10,則△CEF的周長為()A.12 B.16 C.18 D.244.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.35.《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,成書于約一千五百年前,其中有首歌謠:今有竿不知其長,量得影長一丈五尺,立一標(biāo)桿,長一尺五寸,影長五寸,問竿長幾何?意即:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標(biāo)桿,它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為()A.五丈 B.四丈五尺 C.一丈 D.五尺6.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規(guī)作圖的痕跡,則下列結(jié)論錯誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC7.如圖是棋盤的一部分,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,已知棋子“車”的坐標(biāo)為(-2,1),棋子“馬”的坐標(biāo)為(3,-1),則棋子“炮”的坐標(biāo)為()A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.某班選舉班干部,全班有1名同學(xué)都有選舉權(quán)和被選舉權(quán),他們的編號分別為1,2,…,1.老師規(guī)定:同意某同學(xué)當(dāng)選的記“1”,不同意(含棄權(quán))的記“0”.如果令其中i=1,2,…,1;j=1,2,…,1.則a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實(shí)際意義是()A.同意第1號或者第2號同學(xué)當(dāng)選的人數(shù)B.同時同意第1號和第2號同學(xué)當(dāng)選的人數(shù)C.不同意第1號或者第2號同學(xué)當(dāng)選的人數(shù)D.不同意第1號和第2號同學(xué)當(dāng)選的人數(shù)9.定義:若點(diǎn)P(a,b)在函數(shù)y=1x的圖象上,將以a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y=1x的一個“派生函數(shù)”.例如:點(diǎn)(2,12)在函數(shù)y=1x的圖象上,則函數(shù)y=2x2+(1)存在函數(shù)y=1x(2)函數(shù)y=1xA.命題(1)與命題(2)都是真命題B.命題(1)與命題(2)都是假命題C.命題(1)是假命題,命題(2)是真命題D.命題(1)是真命題,命題(2)是假命題10.下列大學(xué)的?;請D案是軸對稱圖形的是()A. B. C. D.11.若實(shí)數(shù)a,b滿足|a|>|b|,則與實(shí)數(shù)a,b對應(yīng)的點(diǎn)在數(shù)軸上的位置可以是()A. B. C. D.12.關(guān)于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一個根為0,則a值為()A.1 B.﹣1 C.±1 D.0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB是⊙O的直徑,AB=2,點(diǎn)C在⊙O上,∠CAB=30°,D為的中點(diǎn),P是直徑AB上一動點(diǎn),則PC+PD的最小值為________.14.計(jì)算:2a×(﹣2b)=_____.15.如圖,矩形ABCD的對角線AC與BD交于點(diǎn)O,過點(diǎn)O作BD的垂線分別交AD,BC于E,F(xiàn)兩點(diǎn).若AC=,∠AEO=120°,則FC的長度為_____.16.如圖所示,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點(diǎn)上,則∠AED的正切值等于__________.17.如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_(dá)____________米(結(jié)果保留根號).18.分解因式:x3﹣2x2+x=______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,直線:與軸,軸分別交于,兩點(diǎn),且點(diǎn),點(diǎn)在軸正半軸上運(yùn)動,過點(diǎn)作平行于軸的直線.(1)求的值和點(diǎn)的坐標(biāo);(2)當(dāng)時,直線與直線交于點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn),求反比例函數(shù)的解析式;(3)當(dāng)時,若直線與直線和(2)反比例函數(shù)的圖象分別交于點(diǎn),,當(dāng)間距離大于等于2時,求的取值范圍.20.(6分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點(diǎn),連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點(diǎn)P作⊙O的切線交CD的延長線于點(diǎn)E,過點(diǎn)A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.21.(6分)某同學(xué)報(bào)名參加學(xué)校秋季運(yùn)動會,有以下5個項(xiàng)目可供選擇:徑賽項(xiàng)目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用T1、T2表示).該同學(xué)從5個項(xiàng)目中任選一個,恰好是田賽項(xiàng)目的概率P為;該同學(xué)從5個項(xiàng)目中任選兩個,求恰好是一個徑賽項(xiàng)目和一個田賽項(xiàng)目的概率P1,利用列表法或樹狀圖加以說明;該同學(xué)從5個項(xiàng)目中任選兩個,則兩個項(xiàng)目都是徑賽項(xiàng)目的概率P2為.22.(8分)如圖,在平面直角坐標(biāo)系中,A為y軸正半軸上一點(diǎn),過點(diǎn)A作x軸的平行線,交函數(shù)的圖象于B點(diǎn),交函數(shù)的圖象于C,過C作y軸和平行線交BO的延長線于D.(1)如果點(diǎn)A的坐標(biāo)為(0,2),求線段AB與線段CA的長度之比;(2)如果點(diǎn)A的坐標(biāo)為(0,a),求線段AB與線段CA的長度之比;(3)在(1)條件下,四邊形AODC的面積為多少?23.(8分)計(jì)算:+(﹣)﹣1+|1﹣|﹣4sin45°.24.(10分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求△MBC的面積的最大值,并求出此時M點(diǎn)的坐標(biāo).25.(10分)(5分)計(jì)算:(126.(12分)如圖,Rt△ABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CE∥DB,BE∥DC.(1)求證:四邊形DBEC是菱形;(2)若AD=3,DF=1,求四邊形DBEC面積.27.(12分)解不等式組:并寫出它的所有整數(shù)解.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

找到從正面看所得到的圖形即可,注意所有從正面看到的棱都應(yīng)表現(xiàn)在主視圖中.【詳解】解:從正面看該幾何體,有3列正方形,分別有:2個,2個,2個,如圖.故選B.【點(diǎn)睛】本題考查了三視圖的知識,主視圖是從物體的正面看到的視圖,屬于基礎(chǔ)題型.2、A【解析】根據(jù)同底數(shù)冪的乘法,同底數(shù)冪的除法,合并同類項(xiàng),冪的乘方與積的乘方運(yùn)算法則逐一計(jì)算作出判斷:A、x?x4=x5,原式計(jì)算正確,故本選項(xiàng)正確;B、x6÷x3=x3,原式計(jì)算錯誤,故本選項(xiàng)錯誤;C、3x2﹣x2=2x2,原式計(jì)算錯誤,故本選項(xiàng)錯誤;D、(2x2)3=8x,原式計(jì)算錯誤,故本選項(xiàng)錯誤.故選A.3、A【解析】

解:∵四邊形ABCD為矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直線AE折疊,頂點(diǎn)D恰好落在BC邊上的F處,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC-BF=10-6=4,∴△CEF的周長為:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故選A.4、B【解析】

根據(jù)勾股定理和三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,設(shè)a=x,則c=3x,b==2x.即tanA==.故選B.【點(diǎn)睛】本題考查勾股定理和三角函數(shù),熟悉掌握是解題關(guān)鍵.5、B【解析】【分析】根據(jù)同一時刻物高與影長成正比可得出結(jié)論.【詳解】設(shè)竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標(biāo)桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴,解得x=45(尺),故選B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用舉例,熟知同一時刻物髙與影長成正比是解答此題的關(guān)鍵.6、D【解析】

解:根據(jù)圖中尺規(guī)作圖的痕跡,可得∠DAE=∠B,故A選項(xiàng)正確,∴AE∥BC,故C選項(xiàng)正確,∴∠EAC=∠C,故B選項(xiàng)正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項(xiàng)錯誤,故選D.【點(diǎn)睛】本題考查作圖—復(fù)雜作圖;平行線的判定與性質(zhì);三角形的外角性質(zhì).7、B【解析】

直接利用已知點(diǎn)坐標(biāo)建立平面直角坐標(biāo)系進(jìn)而得出答案.【詳解】解:根據(jù)棋子“車”的坐標(biāo)為(-2,1),建立如下平面直角坐標(biāo)系:∴棋子“炮”的坐標(biāo)為(2,1),故答案為:B.【點(diǎn)睛】本題考查了坐標(biāo)確定位置,正確建立平面直角坐標(biāo)系是解題的關(guān)鍵.8、B【解析】

先寫出同意第1號同學(xué)當(dāng)選的同學(xué),再寫出同意第2號同學(xué)當(dāng)選的同學(xué),那么同時同意1,2號同學(xué)當(dāng)選的人數(shù)是他們對應(yīng)相乘再相加.【詳解】第1,2,3,……,1名同學(xué)是否同意第1號同學(xué)當(dāng)選依次由a1,1,a2,1,a3,1,…,a1,1來確定,是否同意第2號同學(xué)當(dāng)選依次由a1,2,a2,2,a3,2,…,a1,2來確定,∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實(shí)際意義是同時同意第1號和第2號同學(xué)當(dāng)選的人數(shù),故選B.【點(diǎn)睛】本題考查了推理應(yīng)用題,題目比較新穎,是基礎(chǔ)題.9、C【解析】試題分析:(1)根據(jù)二次函數(shù)y=ax2+bx的性質(zhì)a、b同號對稱軸在y軸左側(cè),a、b異號對稱軸在y軸右側(cè)即可判斷.(2)根據(jù)“派生函數(shù)”y=ax2+bx,x=0時,y=0,經(jīng)過原點(diǎn),不能得出結(jié)論.(1)∵P(a,b)在y=上,∴a和b同號,所以對稱軸在y軸左側(cè),∴存在函數(shù)y=的一個“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè)是假命題.(2)∵函數(shù)y=的所有“派生函數(shù)”為y=ax2+bx,∴x=0時,y=0,∴所有“派生函數(shù)”為y=ax2+bx經(jīng)過原點(diǎn),∴函數(shù)y=的所有“派生函數(shù)”,的圖象都進(jìn)過同一點(diǎn),是真命題.考點(diǎn):(1)命題與定理;(2)新定義型10、B【解析】

根據(jù)軸對稱圖形的概念對各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項(xiàng)錯誤;

B、是軸對稱圖形,故本選項(xiàng)正確;

C、不是軸對稱圖形,故本選項(xiàng)錯誤;

D、不是軸對稱圖形,故本選項(xiàng)錯誤.

故選:B.【點(diǎn)睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.11、D【解析】

根據(jù)絕對值的意義即可解答.【詳解】由|a|>|b|,得a與原點(diǎn)的距離比b與原點(diǎn)的距離遠(yuǎn),只有選項(xiàng)D符合,故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸,熟練運(yùn)用絕對值的意義是解題關(guān)鍵.12、B【解析】

根據(jù)一元二次方程的定義和一元二次方程的解的定義得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【詳解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是關(guān)于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故選:B.【點(diǎn)睛】本題考查了對一元二次方程的定義,一元二次方程的解等知識點(diǎn)的理解和運(yùn)用,注意根據(jù)已知得出a﹣1≠0,a2﹣1=0,不要漏掉對一元二次方程二次項(xiàng)系數(shù)不為0的考慮.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

作出D關(guān)于AB的對稱點(diǎn)D’,則PC+PD的最小值就是CD’的長度,在△COD'中根據(jù)邊角關(guān)系即可求解.【詳解】解:如圖:作出D關(guān)于AB的對稱點(diǎn)D’,連接OC,OD',CD'.又∵點(diǎn)C在⊙O上,∠CAB=30°,D為弧BC的中點(diǎn),即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.則△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案為:.【點(diǎn)睛】本題考查了軸對稱-最短路線問題,勾股定理,垂徑定理,正確作出輔助線是解題的關(guān)鍵.14、﹣4ab【解析】

根據(jù)單項(xiàng)式與單項(xiàng)式的乘法解答即可.【詳解】2a×(﹣2b)=﹣4ab.故答案為﹣4ab.【點(diǎn)睛】本題考查了單項(xiàng)式的乘法,關(guān)鍵是根據(jù)單項(xiàng)式的乘法法則解答.15、1【解析】

先根據(jù)矩形的性質(zhì),推理得到OF=CF,再根據(jù)Rt△BOF求得OF的長,即可得到CF的長.【詳解】解:∵EF⊥BD,∠AEO=120°,

∴∠EDO=30°,∠DEO=60°,

∵四邊形ABCD是矩形,

∴∠OBF=∠OCF=30°,∠BFO=60°,

∴∠FOC=60°-30°=30°,

∴OF=CF,

又∵Rt△BOF中,BO=BD=AC=,

∴OF=tan30°×BO=1,

∴CF=1,

故答案為:1.【點(diǎn)睛】本題考查矩形的性質(zhì)以及解直角三角形的運(yùn)用,解題關(guān)鍵是掌握:矩形的對角線相等且互相平分.16、【解析】

根據(jù)同弧或等弧所對的圓周角相等來求解.【詳解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故選D.【點(diǎn)睛】本題利用了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念求解.17、【解析】設(shè)出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點(diǎn)睛”本題考查了平行投影的應(yīng)用,太陽光線下物體影子的長短不僅與物體有關(guān),而且與時間有關(guān),不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關(guān)鍵是根據(jù)三角函數(shù)的幾何意義得出各線段的比例關(guān)系,從而得出答案.18、x(x-1)2.【解析】由題意得,x3﹣2x2+x=x(x﹣1)2三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1),;(2);的取值范圍是:.【解析】

(1)把代入得出的值,進(jìn)而得出點(diǎn)坐標(biāo);(2)當(dāng)時,將代入,進(jìn)而得出的值,求出點(diǎn)坐標(biāo)得出反比例函數(shù)的解析式;(3)可得,當(dāng)向下運(yùn)動但是不超過軸時,符合要求,進(jìn)而得出的取值范圍.【詳解】解:(1)∵直線:經(jīng)過點(diǎn),∴,∴,∴;(2)當(dāng)時,將代入,得,,∴代入得,,∴;(3)當(dāng)時,即,而,如圖,,當(dāng)向下運(yùn)動但是不超過軸時,符合要求,∴的取值范圍是:.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn),當(dāng)有兩個函數(shù)的時候,著重使用一次函數(shù),體現(xiàn)了方程思想,綜合性較強(qiáng).20、(1)見解析;(2)見解析;(3)AB=1【解析】

(1)由垂徑定理得出∠CPB=∠BCD,根據(jù)∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據(jù)此可得2∠APG=∠F,據(jù)此即可得證;(3)連接AE,取AE中點(diǎn)N,連接HN、PN,過點(diǎn)E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設(shè)PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,證∠PEM=∠ABP得BP=3k,繼而可得BE=k=2,據(jù)此求得k=2,從而得出AP、BP的長,利用勾股定理可得答案.【詳解】證明:(1)∵AB是⊙O的直徑且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)連接OP,則OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切線,∴OP⊥PF,則∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直徑,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=∠F;(3)連接AE,取AE中點(diǎn)N,連接HN、PN,過點(diǎn)E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四點(diǎn)共圓,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,則,∴,∴MF=GP,∵3PF=5PG,∴,設(shè)PG=3k,則PF=5k,MF=PG=3k,PM=2k由(2)知∠FPE=∠PEF,∴PF=EF=5k,則EM=4k,∴tan∠PEM=,tan∠F=,∴tan∠PAE=,∵PE=,∴AP=k,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,則tan∠ABP=tan∠PEM,即,∴,則BP=3k,∴BE=k=2,則k=2,∴AP=3、BP=6,根據(jù)勾股定理得,AB=1.【點(diǎn)睛】本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握圓周角定理、四點(diǎn)共圓條件、相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識點(diǎn).21、(1);(1);(3);【解析】

(1)直接根據(jù)概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結(jié)果數(shù),再找出一個徑賽項(xiàng)目和一個田賽項(xiàng)目的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算一個徑賽項(xiàng)目和一個田賽項(xiàng)目的概率P1;(3)找出兩個項(xiàng)目都是徑賽項(xiàng)目的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算兩個項(xiàng)目都是徑賽項(xiàng)目的概率P1.【詳解】解:(1)該同學(xué)從5個項(xiàng)目中任選一個,恰好是田賽項(xiàng)目的概率P=;(1)畫樹狀圖為:共有10種等可能的結(jié)果數(shù),其中一個徑賽項(xiàng)目和一個田賽項(xiàng)目的結(jié)果數(shù)為11,所以一個徑賽項(xiàng)目和一個田賽項(xiàng)目的概率P1==;(3)兩個項(xiàng)目都是徑賽項(xiàng)目的結(jié)果數(shù)為6,所以兩個項(xiàng)目都是徑賽項(xiàng)目的概率P1==.故答案為.考點(diǎn):列表法與樹狀圖法.22、(1)線段AB與線段CA的長度之比為;(2)線段AB與線段CA的長度之比為;(3)1.【解析】試題分析:(1)由題意把y=2代入兩個反比例函數(shù)的解析式即可求得點(diǎn)B、C的橫坐標(biāo),從而得到AB、AC的長,即可得到線段AB與AC的比值;(2)由題意把y=a代入兩個反比例函數(shù)的解析式即可求得用“a”表示的點(diǎn)B、C的橫坐標(biāo),從而可得到AB、AC的長,即可得到線段AB與AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行線分線段成比例定理即可求得CD的長,從而可由梯形的面積公式求出四邊形AODC的面積.試題解析:(1)∵A(0,2),BC∥x軸,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴線段AB與線段CA的長度之比為;(2)∵B是函數(shù)y=﹣(x<0)的一點(diǎn),C是函數(shù)y=(x>0)的一點(diǎn),∴B(﹣,a),C(,a),∴AB=,CA=,∴線段AB與線段CA的長度之比為;(3)∵=,∴=,又∵OA=a,CD∥y軸,∴,∴CD=4a,∴四邊形AODC的面積為=(a+4a)×=1.23、【解析】

根據(jù)絕對值的概念、特殊三角函數(shù)值、負(fù)整數(shù)指數(shù)冪、二次根式的化簡計(jì)算即可得出結(jié)論.【詳解】解:+(﹣)﹣1+|1﹣|﹣1sin15°=2﹣3+﹣1﹣1×=2﹣3+﹣1﹣2=﹣1.【點(diǎn)睛】此題主要考查了實(shí)數(shù)的運(yùn)算,負(fù)指數(shù),絕對值,特殊角的三角函數(shù),熟練掌握運(yùn)算法則是解本題的關(guān)鍵.24、(1);(2)(,0);(3)1,M(2,﹣3).【解析】試題分析:方法一:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點(diǎn)坐標(biāo)代入解析式中即可.(2)首先根據(jù)拋物線的解析式確定A點(diǎn)坐標(biāo),然后通過證明△ABC是直角三角形來推導(dǎo)出直徑AB和圓心的位置,由此確定圓心坐標(biāo).(3)△MBC的面積可由S△MBC=BC×h表示,若要它的面積最大,需要使h取最大值,即點(diǎn)M到直線BC的距離最大,若設(shè)一條平行于BC的直線,那么當(dāng)該直線與拋物線有且只有一個交點(diǎn)時,該交點(diǎn)就是點(diǎn)M.方法二:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點(diǎn)坐標(biāo)代入解析式中即可.(2)通過求出A,B,C三點(diǎn)坐標(biāo),利用勾股定理或利用斜率垂直公式可求出AC⊥BC,從而求出圓心坐標(biāo).(3)利用三角形面積公式,過M點(diǎn)作x軸垂線,水平底與鉛垂高乘積的一半,得出△MBC的面積函數(shù),從而求出M點(diǎn).試題解析:解:方法一:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)由(1)的函數(shù)解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA?OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC為直角三角形,AB為△ABC外接圓的直徑;所以該外接圓的圓心為AB的中點(diǎn),且坐標(biāo)為:(,0).(3)已求得:B(1,0)、C(0,﹣2),可得直線BC的解析式為:y=x﹣2;設(shè)直線l∥BC,則該直線的解析式可表示為:y=x+b,當(dāng)直線l與拋物線只有一個交點(diǎn)時,可列方程:x+b=,即:,且△=0;∴1﹣1×(﹣2﹣b)=0,即b=﹣1;∴直線l:y=x﹣1.所以點(diǎn)M即直線l和拋物線的唯一交點(diǎn),有:,解得:即M(2,﹣3).過M點(diǎn)作MN⊥x軸于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.方法二:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)∵y=(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴KAC==﹣2,KBC==,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB為斜邊的直角三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論