版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
線性代數(shù)難點解析(Analysisofdifficultiesinlinearalgebra)
Ananalysisofdifficultproblemsinlinearalgebra.Txt
Chapterdeterminant
I.emphasis
1.Understanding:thedefinitionofadeterminant,acofactor,
analgebraiccofactor.
2,grasp:determinantofthebasicnatureandinference.
3,theuseof:theuseofdeterminantpropertiesandcalculation
methodstocalculatethedeterminant,usingtheClemrulefor
solvingequations.
Two,difficulties
Theapplicationofdeterminantinthesolutionoflinear
equations,theinverseofmatrices,the1inearcorrelationof
vectorsandtheeigenvaluesofmatrices.
Threeimportantformula
1,ifAisamatrixofN,then,kA/=kn/A/
2,ifAandBarenordermatrix,is/AB/A/B/=,,,
3,ifAisamatrixofN,then,A*//A/n-1=
IfAisninvertiblematrix,then/A-l/A/-1/=
4,ifAisnordersquare,lambdaI(i=l,2,...N,A)isthe
characteristicvalueofA/PIlambda=I
Four,questionsandSolutions
1,thepropositionabouttheconceptandpropertyof
determinant
2,thecalculationofthedeterminant(method)
1)usedefined
2)reducetheorderofadeterminantaccordingtoarow(column)
3)thenatureofthedeterminant
Rows(columns)addedtothesamerow(column)tobeappliedto
theequalityoftheelementsofeachcolumn(row).
Doubleorminusthesameline(column)ofeachrow(column),
reducethedeterminant,orturnitintotheupper(lower)
triangledeterminant.
Third,successive(column)additionandsubtraction,and
simplifieddeterminant.
Breakthedeterminantintothesumanddifferenceofseveral
determinants.
4)recursivemethodisapplicabletothedeterminantwith
strongregularityandzeroelements
5)mathematicalinduction,moreusedtoprove
3,useClem'slawtosolvelinearequations
IfD=A//=0,thenAx=bhasauniquesolution,i.e.
X1=D1/D,x2=,D2/D,...Xn=Dn/D
WhereDjistochangethecoefficientsofXJintoconstantsin
D.
Note:theClemlawappliesonlytoequationswhosenumberof
equationsisequaltothenumberofunknowns.
4,usingthecoefficientdeterminantsolutionoftheproblem
ofdiscriminationofAequations
1)when,A/=0,Ax=0homogeneousequationswithnonzero
solution;non-homogeneousequationsAx=Bisnottheonly
solution(mayhavenosolution,mayalsohaveinfinitelymany
solutions)
2)when,A/=0,theequationAx=0onlyzerosolution;
non-homogeneousequationAx=Bistheonlysolution,this
solutioncanbecalculatedbytheClemrule
Secondchaptermatrix
I.emphasis
1.Understanding:thedefinitionandpropertiesofmatrices,
severalspecialmatrices(zeromatrix,upper(lower)
triangularmatrix,symmetricmatrix,diagonalmatrix,inverse
matrix,orthogonalmatrix,adjointmatrix,partitionedmatrix)
2,master:
1)matrixofvariousoperationsandrulesofoperation
2)themethodofjudginginvertiblematrixandinvertingmatrix
3)elementarytransformationmethodofmatrix
Two,difficulties
1、theelementarytransformationofinversematrixofmatrix
2,therelationbetweenelementarytransformationand
elementarymatrix
Three,theimportantformulaanddifficultyanalysis
1,linearoperation
1)theexchangelawisgenerallynotestablished,namelyABand
BA
2)somealgebraicidentitiescannotbeapplieddirectly,such
asA,BandC,allofwhicharenordermatrices
(A+B)2=A2+AB+BA+B2=A2+2AB+B2
(AB)2=(AB)(AB=A2B2)
(AB)k=AkBk
(A+B)(A-B=A2-B2)
AllofthesearesetuponlywhenAandBareexchanged,i.e.,
AB=BA.
3)A=0orB=0cannotbederivedfromAB=0
4)theAB=ACcannotbereachedbyB=C
5)A=IorA=0cannotbederivedfromA2=A
6)theA2=0cannotbereachedbyA=0
7)thedifferencebetweennumbermultiplicationmatrixand
numbermultiplicationdeterminant
2andinversematrix
1)(A-1)-1=A
2)(kA)-1=(1/k)A-1(k=0).
3)(AB)-1=B-1A-1
4)(A-1)T=(AT)-1
5)/A/A=-1,-1,
3,matrixtranspose
1)(AT)T=A
2)(kA)T=kAT,(kisanyrealnumber)
3)(AB)T=BTAT
4)(A+B)T=AT+BT
4adjointmatrix
1)A*A=AA*=/A/I(AB)*=B*A*
2)(A*)/A/n-2/A**=/=/A/n-1(n=2).
3)(kA)*=knTA*(A*)T=(AT)*
4)ifR(A)=n,thenR(A*)=n
IfR(A)=n-l,thenR(A*)=1
IfR(A)
5)ifAisreversible,(A*)-1=(1//A/A),-1(A*)=(A-l)
*,A*=/A/A-l
5,elementarytransformation(threekinds)
1)changethetwoline(column)
2)withK(k=0)multipliedbyarow(column)inallelements
3)theKofarow(column)ofelementsisdoubledtoanother
line(column)ofthecorrespondingelement
Note:theprimarytransformationisusedtofindtherank,and
therowandcolumntransformationscanbeusedtogether
Inversematrixcanonlybechangedbyroworcolumn
Thesolutionof1inearequationscanonlybechangedbyrow
transformation
6,elementarymatrix
1)amatrixobtainedbyelementarytransformationofaunit
matrix
2)theelementarymatrixPtakestheleft(right)A,andthe
resultingPA(AP)isAandmakesthesamerow(column)
transformationasP
3)elementarymatricesareinvertible,andtheirinverseisof
thesametypeasElementaryMatrices
E-lij=Eij,E(-1),I(k),=Ei(1/k),E(-1),ij(k),=Eij(-k)
Matrixequation7
1)anequationcontaininganunknownmatrix
2)thenecessaryandsufficientconditionsforthesolutionof
matrixequation
AX=Bhas<==>B,eachcolumncanberepresented1inearlybythe
columnvectorofA
<==>r(A)=r(A,B)
Four,questionsandSolutions
1.Propositionsontheconceptandnatureofmatrices
2,theoperationofthematrix(add,multiply,multiply,
transpose)
3,thematrixreversibledecision
NordermatrixA<==>arereversiblematrixofordernB,AB=BA=I
<==>/A/=0
<==>r(A)=n
Thecolumn(row)vectorsofthe<==>Aarelinearlyindependent
<==>Ax=0hasonlyzerosolutions
<==>anyB,Ax=bmakesauniquesolution
Theeigenvaluesof<==>Aarenotzero
4,matrixinversion
1)definethemethod:findB,makeAB=IorBA=I
2:AT=(1/)withthemethodofA*/A)
Note:usingthemethodofinverse,algebraiccofactorinline
typeshouldbeverticallywritteninA*,don'tomitthe
calculationofAij(-1)i+j,whenn>3,usuallywithelementary
transformationmethod.
3)elementarytransformationmethod:(A,I)onlyfor
transformation(I,AT)
4)blockmatrixmethod
5.SolvingmatrixequationAX=B
1)ifAisreversible,thenX=A-1BcanfirstfindA-l,andthen
multiplyA-IBtofindX
2)iftheAisreversible,theprimarytransformationmethod
canbeusedtodirectlyfindtheX
(A,B)(I,Xelementaryrowtransformation)
3)iftheAisnotinvertible,theunknownsequenceequation
canbesetup,andtheGausseliminationmethodisusedasa
ladderequationgroup,andthentheconstantsofeachcolumn
aresolvedrespectively.
Thethirdchapter,linearequations
I.emphasis
1,understanding:vectorvectoroperationsandvectorandthe
linearcombinationoflinearform,theconceptofmaximum
linearlyindependentgroup,theconceptoflineardependence
andlinearindependence,theconceptofvectorgrouprank,
conceptsandpropertiesoftherankofmatrix,theconceptof
solutionsisbased.
2,master:theoperationofthevectorandthelawofoperation,
thecalculationoftherankofthematrix,thestructureofthe
solutionofthehomogeneousandnon-homogeneouslinear
equations.
3,theuseof:1inearcorrelation,linearindependence
judgments,linearequations,thesolutionofthesolution,
homogeneousandnon-homogeneouslinearequationssolution.
Two,difficulties
Decisionoflinearcorrelationandlinearindependence.The
relationbetweentherankofavectorsetandtherankofa
matrix.Therelationbetweenlinearrepresentationandrankof
equationsandvectors.
Three.Analysisofkeyanddifficultpoints
1.Theconceptandoperationofn-dimensionalvectors
1)concept
2)operations
Ifalpha=(Al,A2),...(an)T,beta=(Bl,B2),...BN,T)
Addition:alpha+beta=(al+bl,a2+b2,...(an+bn)T
Numbermultiplication:k=ka2(KAI),…Kan,T)
Internalproduct:(alpha,beta)=albl+a2b2+,…+anbn=Alpha
Tbeta=betaTalpha
2,linearcombinationandlinearlist
3,linearcorrelationandlinearindependence
1)concept
2)thenecessaryandsufficientconditionoflinearcorrelation
andlinearindependence
Linearcorrelation
Alpha1,alpha2,...Linearcorrelationofalphas
<==>homogeneousequations(alpha1,alpha2,...(alphas)(xl,
X2),…(XS)T=0hasnonzerosolutions
Rankr<==>vectorgroup(alpha1,alpha2,...(alpha,s)less
thans(numberofvectors)
Thereisa<==>alphai(i=l,2,...(s)canbelinearlyexpressed
bytherestoftheS-1vectors
Special:nan-dimensionalvectorlinearcorrelation<==>,
alpha1,alpha2...N,alpha=0
N+ln-dimensionalvectorsarelinearlyrelated
Linearlyindependent
Alpha1,alpha2,...Alphasislinearlyindependent
<==>homogeneousequations(alpha1,alpha2,...(alphas)(xl,
X2),…(XS)T=0,onlyzerosolution
Rankr<==>vectorgroup(alpha1,alpha2,...(alphas)=s
(numberofvectors)
<==>everyvectoralphai(i=l,2,...S)cannotbelinearly
representedbytherestoftheS_1vectors
Importantconclusions
TheAandladdervectorsarelinearlyindependent
B,alpha1,alpha2,...Alphasislinearlyindependent,and
anypartofitisalphaII,alphai2,...Thealphaitmustbe
linearlyindependent,andanyofitsextendedgroupsmustbe
linearlyindependent.
ThevectorsofC,22orthogonal,nonzerovectorsmustbe
linearlyindependent.
4,therankofvectorgroupandtherankofmatrix
1)theconceptofmaximallinearlyindependentgroups
2)therankofavectorgroup
3)rankofamatrix
R(A)=R(AT)
TheR(A+B)=R(A)R(B)
TheR(kA)=R(A),k=0
TheR(AB)=min(R(A),R(B))
IfAisreversible,thenR(AB)=R(B);ifBisreversible,
thenR(AB)=R(A)
TheAism*n*Bnarray,Parray,AB=0,R(A)+R(B=n)
4)therelationbetweentherankofavectorsetandtherank
ofamatrix
RowrankofR(A)=A(rankofrowvectorgroupofmatrixA)
=rowrankofA(rankofcolumnvectorgroupofmatrixA)
Therankofthematrixandthevectorgroupareinvariantafter
elementarytransformation
Ifthevectorgroup(I)by(II)lineartable,R(I)=R(II).
Inparticular,theequivalentvectorgroupshavethesamerank,
butthesamevectorsetsarenotnecessarilyequivalent.
5,theconceptandsolutionofthefundamentalsolution
1)concept
2)seekingthelaw
Astheelementaryrowtransformationintotrapezoidalmatrix
ofA,saideachnonzerorowinthefirstnonzerocoefficients
representtheunknownisthemainelement(atotalofR(A)is
amainelement,thentheotherremainingunknown)isafree
variable(atotalofn-R(A)a),thefreevariablesaccording
tostepaftertheassignment,thenyoucangetintothesolving
systemofbasicsolutions.
Thedeterminationofnonzerosolutionsfor6andhomogeneous
equations
1)letAbeam*nmatrix,andAx=0hasanonzerosolution,
andthenecessaryandsufficientconditionisR(A)<n,orA's
columnvectorislinearlyrelated.
2)ifAisnmatrix,Ax=0nonzerosolutionisnecessaryand
sufficientconditionsofA=0,
3)Ax=0,thesufficientconditionofnonzerosolutionism
<n,thatis,thenumberofequationsandthenumberofunknowns
7,thedeterminationofthesolutionsofnonhomogeneouslinear
equations
1)letAbethem*nmatrix,andAx=Bhasthenecessaryand
sufficientconditionthattherankofthecoefficientmatrix
Aisequaltotherankoftheaugmentedmatrix(Aincrease),
thatis,R(A)=R(A+)
2)letAbem*nmatrix,equationAx=b
Thereisauniquesolution<==>R(A)=R(A=n)
Thereareinfinitelymanysolutions<==>R(A)=R(A)
Thesolutionof<==>R(A)+l=r(A)
8,thestructureofsolutionsofnonhomogeneouslinear
equations
SuchasnlinearequationsAx=Bsolution,2,...T,ETAisthe
correspondinghomogeneousequationsAx=0basedsolutions,e
isasolutionofAx=B,KIl+k22+...+ktAx=Bt+zetaETA
isthegeneralsolution.
1)ifE1.2isAx=B,1-,zetazeta2=0Axsolution
2)ifeisAx=B,Ax=0isETAsolutionis+k=BorAxzeta
ETAsolution
3)ifAx=Bhasauniquesolution,thenAx=0hasonlyzero
solutions;conversely,whenAx=0hasonlyzerosolutions,Ax
=Bhasnoinfinitesolution(mayhavenosolutionandmayhave
onlyonesolution)
Four,questionsandSolutions
1.Propositionsabouttheconceptandpropertiesof
n-dimensionalvectors
2.Additionandmultiplicationofvectors
3,linearcorrelationandlinearindependenceproof
1)definitionmethod
LetKIalphal+k2alpha2+...+ks=s=0,thenmakeanidentical
deformationontheupperform(closetotheknowncondition)
B=CcangetAB=AC,soyoucanmultiplyaAontheupperform
bytheinformationoftheknowncondition
Secondly,theupperformisexpandedandtransformeddirectly
intohomogeneouslinearequationsbyknownconditions.Finally,
KIandK2areprovedbyanalysis,...TakethevalueofKSand
drawthedesiredconclusion.
2)usingarank(equaltothenumberofvectors)
3)thehomogeneousequationshaveonlyzerosolutions
4)reductiontoabsurdity
4,therankandthemaximallinearindependentgroupofthe
directionalsetaregiven
Byusingtheprimarytransformationmethod,thevectorgroup
istransformedintoamatrixandsolvedbyelementary
transformation.
5,therankofthematrix
Commonelementarytransformationmethod.
6,solvinghomogeneouslinearequationsandnon-homogeneous
linearequations
Thefourthchapterislinearspace
I.emphasis
1.Understandingtheconceptsoflinearspaces,bases,
dimensions,innerproduct,length,angleanddistance,
orthogonalvectorsandorthonormalbases,orthogonalmatrices
2,master:Rnandtheoperationrulesofthevector.
Calculationofinnerproduct,length,angleanddistance.
3.Use:theorthogonalityoftwovectors.
Two,difficulties
Propertiesandapplicationsoforthogonalmatrices.
Three.Analysisofkeyanddifficultpoints
1.Theconceptsandpropertiesoflinearspacesandbases
2,innerproduct,distanceandincludedangle
1)innerproduct:alpha=beta=albl+a2b2+…+anbn
2)length:"alpha"=(alpha,alpha)=al2+a22+(squareroot...
Thesquarerootof+an2)
3)distance:D="alphabeta”=[(al-bl)2+(A2-B2)2+...+
(an-bn)thesquarerootof2]
4:COS)angletheta=(alpha,beta)/("alpha""beta")
Theta=arccosE(alpha,beta)/("alpha""beta")]
5)orthogonalanglealphaandbetais90degrees,recordedas
analphabeta
Alphaandbetaalpha-beta=0orthogonal<==>
6)orthogonalvectorsets:anytwovectorsareperpendicular
toeachother
Anysetofnonzeroorthogonalvectorsmustbelinearly
independent
ThenumberofvectorsofanynonzeroorthogonalvectorsinRn
isnomorethann
3.Orthogonalizationofvectors
1)theconceptoforthonormalbasis
2)Schmidtorthogonalization(firstorthogonalization,re
integration)
4、orthogonalmatrix
1)concept
2)properties
IftheA/A/==>orthogonalarrayor-1=1
==>A-1isstillanorthogonalarray
==>ifBBT=I,AB=I(AB)T
==>Al=AT
3)thenordermatrixAisthenrowvectoroftheorthogonal
matrix<==>A,whichconstitutesasetofstandardorthogonal
basesofRn
Thencolumnvectorsof<==>Aconstituteasetofstandard
orthogonalbasesofRn
Four,questionsandSolutions
1,determinewhetheragivensetis1inearornot
Generally,itisdeterminedbythedefinitionandpropertyof
linearspace
2,findthebasisanddimensionoflinearspace
3,verifythatthen-dimensionalvectorsetisasetofstandard
orthogonalbasesofRn
Steps:1)thevectorsare22orthogonal,i.e.,theinnerproduct
iszero
2)eachvectorisaunitvector,thatis,thelengthis1
4,calculatetheinnerproductoftwovectors,theangleand
distancebetweenvectors
5,thedirectionofthestandardsetoforthogonal
Steps:1)tojudgethelinearcorrelationofvectors,only
linearlyindependentvectorscanbenormalized
2)orthogonalization(Schmidtorthogonalization)
3)standardVI=1///1//betabeta
6,provethepropositionaboutorthogonalmatrix
7.Thejudgmentoforthogonalmatrix
1)definitionmethod:ifAAT=In,==>Aisorthogonalmatrix
IfAATandInarenotorthogonalarray==>A
Thismethodismostlyusedfortheproofofabstractmatrix.
2)thenordermatrixAisthenrowvector(orcolumnvector)
oftheorthogonalmatrix<==>A,whichconstitutesasetof
standardorthogonalbasesofRn
Therow(column)vectorsof<==>Aareunitvectorsand22
orthogonal
Themethodisusedtogivethematrixofspecificvalues.
Thefifthchapteriseigenvalueandeigenvector
I.emphasis
1.Understanding:theconceptofeigenvaluesandeigenvectors
andtheirbasicproperties.
Theconceptandpropertyofsimilarmatrix,theconditionof
thematrixsimilartothediagonalmatrix.
Jordanmatrix.
2.Master:themethodofcomputingeigenvaluesand
eigenvectors.
Findasimilardiagonalmatrix.
Two,difficulties
Similaritydiagonalizationanditsapplications.
Three.Analysisofkeyanddifficultpoints
1.Conceptsandpropertiesofeigenvaluesandeigenvectorsof
matrices
1)concept
Note:iflambdaistheeigenvaluesofA,thenI-A=0/lambda,
lambda,soI-Aisnotinvertiblematrix
IfafeatureisnotA/I-A/lambdavalueisnotequalto0,
sothelambdaI-Aisaninvertiblematrix
Inparticular,the0istheeigenvaluesofA/A/0<==>A=<==>
irreversible
ThebasicsolutionofAx=0isthe1inearlyindependent
characteristicvectoroflambda=0
FornorderA,ifR(A)=1,thenlambda1=sigmaaii,lambda
2=lambda3=...Lambda=n=0
2)properties
IfXIandX2arecharacteristicvectorscorrespondingtothe
characteristicvaluelambdaI,thenthelinearcombinationof
XI(klxl+k2x2)andX2(nonzero)isstillthecharacteristic
vectoroflambdaI.TheeigenvectorsoflambdaIarenotunique,
andinturn,afeaturevectorcanonlybelongtooneeigenvalue.
Thecharacteristicvectorsofdifferenteigenvaluesare
linearlyindependent,andwhenlambdaIistheKheavy
eigenvaluesofA,AbelongstolambdaI,andthenumberof
linearlyindependenteigenvectorsisnotmorethank.
Thesumofeigenvaluesisequaltothesumofelementsonthe
principaldiagonalofamatrix,andtheproductofthe
eigenvaluesisequaltothevalueofthedeterminantofthe
matrixA.
2,theconceptandpropertyofsimilarmatrix
1)concept
2)properties
IfA~B==>AT~BT
==>Al~B-l(ifAandBarereversible)
==>Ak?Bk(kispositiveinteger)
==>/I-A/lambda=lambda/I-B/AandB,whichhavethesame
characteristicvalue
==>/A/B/,=A,B,andatthesametimereversibleor
irreversible
==>r(A)=R(B)
3.Thenecessaryandsufficientconditionsforthe
diagonalizationofmatrices
1)theconceptofsimilardiagonalization
2)sufficientandnecessarycondition
Aissimilartodiagonalarray.<==>Ahasnlinearlyindependent
eigenvectors
Ineacheigenvalueof<==>A,thenumberoflinearlyindependent
eigenvectorsisexactlyequaltotheeigenvaluesofthe
eigenvalues
3)thesufficientconditionthatAissimilartoadiagonal
matrixisthatAhasndifferenteigenvalues
4,symmetrymatrixsimilarity
1)therealsymmetricmatrixmustbediagonalization
2)characteristics
Theeigenvaluesareal1realnumbers,andthefeaturevectors
arerealvectors
Theeigenvectorsofdifferenteigenvaluesareorthogonalto
eachother
TheKeigenvaluesmusthaveKlinearlyindependenteigenvectors,
ormustber(lambdaI-A)=n-k
Four,questionsandSolutions
1.Themethodoffindingeigenvaluesandeigenvectors
1)pairofabstractmatrices
Basedonthedefinitionandpropertiesofeigenvaluesand
eigenvectors,theeigenvaluevaluesarederived.
2)pairofdigitalmatrices
FromthecharacteristicequationofI-A/lambda=0for
eigenvaluelambdaI(shouldben,containingheavyroot)
Solvingthehomogeneousequationgroup(lambdaI-A)x=0,and
itsbasicsolutionisthelinearlyindependentcharacteristic
vectorcorrespondingtolambda.
2,todeterminewhetherAcanbediagonalization
1)method:nordermatrixAfeaturevectornlinearindependent
diagonalization<==>A
Methodtwo:foranyoftheeigenvaluesofthenordersquare
A,I(setasakiradical)hasN-R(lambdail-A)=ki
2)theprocedureoftransformingAintodiagonalmatrices
First,findtheeigenvaluesofA1,lambda2,...An.
Second,thecorrespondinglinearindependenteigenvectorsxl,
x2,...Xn.
1.
StructureinvertiblematrixP=(xl,X2)...Xn),isP1AP[lambda
=2...]
Lambdan
3.Thedeterminantisobtainedbyeigenvalueandsimilarity
matrix
1)/A/lambda1=lambda2...Lambdan,wherelambda1,lambda
2,...LambdanistheNeigenvalueofA
2)ifA~B/A/B/=,,
4,theuseofsimilardiagonalizationAn
IfthereisaA",invertiblematrixP,theP-1AP=lambda,
then
A=PandAn=PPllambda,lambdaNP1
Whichissimilartoastandardtype:A
5.Theproofofeigenvaluesandeigenvectors
Thesixthchapter,therealtwotimes
I.emphasis
1.Understanding:theconceptofthetwotype,therelation
betweenthetwotypesofsymmetricmatrices,theconceptof
matrixcontract,theconceptofstandardtypeandstandard
standardtype,theconceptofpositivedefinitetypetwoand
theconceptofpositivedefinitematrix.
2:graspthesymmetrymatrixfromthetwoorderandfindthe
twoformfromthesymmetricmatrix.
TherelationshipbetweenthecontractandtakingWestvariable
transformation.
Thejudgementofpositivedefinitetwotypeandpositive
definitematrix.
3,application:orthogonaltransformationmethod,matching
methodandprimarytransformationmethod,twotimesfor
standardtype,fromstandardtypetostandard,standardtype.
Two,difficulties
Thetwotypeisstandardtype.
Three.Analysisofkeyanddifficultpoints
Theconceptsof1andtwotypesandtheirstandardtypes
1)twotimes
Thematrixofthetwotypeisunique,andthequadraticmatrix
shouldbewrittenimmediatelybythetwotype.Onthecontrary,
theChodeMisymmetrymatrixhastobeconstructedtwotimes.
2)thestandardformofthetwotype
Concept
Positiveandnegativeinertialindex,R(f),=r(A)=p+q
Whentheorthogonaltransformationisthestandardtype,the
squarecoefficientofthestandardtypemustbetheNeigenvalue
ofthematrixA,andthemethoddoesnothavethisproperty.
3)inertiatheorem
Thepositiveandnegativeinertialindexofthetwotypeisthe
onlycon
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度魚塘承包與漁業(yè)生態(tài)旅游合作合同4篇
- 2025年度LED節(jié)能燈具采購與安裝一體化合同范本3篇
- 二零二五年度木材加工設備租賃合同樣本2篇
- 二零二五年度農(nóng)機行業(yè)人才引進與培養(yǎng)合同4篇
- 二零二五年度大摩退出中金項目合同終止倒計時通知2篇
- 2025年度南京家庭裝修工程竣工驗收備案合同4篇
- 2025年度個人光伏發(fā)電貸款擔保合同3篇
- 2025版文化娛樂場所租賃及活動策劃服務合同模板4篇
- 2025版儲罐泄漏檢測與預防措施合同范本3篇
- 2025版農(nóng)民合作社農(nóng)村農(nóng)村電商扶貧項目融資合同3篇
- 2024年09月2024興業(yè)銀行總行崗測評筆試歷年參考題庫附帶答案詳解
- 山東省煙臺市招遠市2024-2025學年九年級上學期期末考試英語(筆試)試題(含答案)
- 駱駝祥子讀書筆記一至二十四章
- 2025年方大萍安鋼鐵招聘筆試參考題庫含答案解析
- 2024年醫(yī)師定期考核臨床類考試題庫及答案(共500題)
- 2025年電力工程施工企業(yè)發(fā)展戰(zhàn)略和經(jīng)營計劃
- 2022年公務員多省聯(lián)考《申論》真題(安徽C卷)及答案解析
- 大型活動保安培訓
- 2024年大學本科課程教育心理學教案(全冊完整版)
- 信息系統(tǒng)運維服務類合同6篇
- 江蘇省七市2025屆高三最后一卷物理試卷含解析
評論
0/150
提交評論