版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
大石橋市水源二中重點中學2024年畢業(yè)升學考試模擬卷數(shù)學卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.42.“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.——蘇科版《數(shù)學》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實數(shù)根的情況是()A.有三個實數(shù)根 B.有兩個實數(shù)根 C.有一個實數(shù)根 D.無實數(shù)根3.在平面直角坐標系中,點是線段上一點,以原點為位似中心把放大到原來的兩倍,則點的對應(yīng)點的坐標為()A. B.或C. D.或4.等腰三角形三邊長分別為,且是關(guān)于的一元二次方程的兩根,則的值為()A.9 B.10 C.9或10 D.8或105.如圖,在菱形ABCD中,E是AC的中點,EF∥CB,交AB于點F,如果EF=3,那么菱形ABCD的周長為()A.24 B.18 C.12 D.96.從3、1、-2這三個數(shù)中任取兩個不同的數(shù)作為P點的坐標,則P點剛好落在第四象限的概率是()A. B. C. D.7.一個空間幾何體的主視圖和左視圖都是邊長為2的正方形,俯視圖是一個圓,那么這個幾何體的表面積是()A.6πB.4πC.8πD.48.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米9.函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣210.如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是()A. B. C.9 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.圓錐的底面半徑為6㎝,母線長為10㎝,則圓錐的側(cè)面積為______cm212.如圖,點O是矩形紙片ABCD的對稱中心,E是BC上一點,將紙片沿AE折疊后,點B恰好與點O重合.若BE=3,則折痕AE的長為____.13.如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是_____.14.若+(y﹣2018)2=0,則x﹣2+y0=_____.15.設(shè)[x)表示大于x的最小整數(shù),如[3)=4,[?1.2)=?1,則下列結(jié)論中正確的是______.(填寫所有正確結(jié)論的序號)①[0)=0;②[x)?x的最小值是0;③[x)?x的最大值是0;④存在實數(shù)x,使[x)?x=0.5成立.16.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.三、解答題(共8題,共72分)17.(8分)學習了正多邊形之后,小馬同學發(fā)現(xiàn)利用對稱、旋轉(zhuǎn)等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數(shù)式表示△BDQ的面積S△BDQ.18.(8分)我國古代《算法統(tǒng)宗》里有這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每間客房住7人,那么有7人無房可??;如果每間客房住9人,那么就空出一間房.求該店有客房多少間?房客多少人?19.(8分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)20.(8分)為落實“美麗撫順”的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?21.(8分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標;(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.22.(10分)為了增強居民節(jié)水意識,某市自來水公司對居民用水采用以戶為單位分段計費辦法收費.若用戶的月用水量不超過15噸,每噸收水費4元;用戶的月用水量超過15噸,超過15噸的部分,按每噸6元收費.(I)根據(jù)題意,填寫下表:月用水量(噸/戶)41016……應(yīng)收水費(元/戶)40……(II)設(shè)一戶居民的月用水量為x噸,應(yīng)收水費y元,寫出y關(guān)于x的函數(shù)關(guān)系式;(III)已知用戶甲上個月比用戶乙多用水6噸,兩戶共收水費126元,求他們上個月分別用水多少噸?23.(12分)(1)計算:(a-b)2-a(a-2b);(2)解方程:=.24.某養(yǎng)雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(Ⅲ)根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的約有多少只?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:過O1、O2作直線,以O(shè)1O2上一點為圓心作一半徑為2的圓,將這個圓從左側(cè)與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結(jié)合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關(guān)系,結(jié)合三個圓的半徑大小即可得到本題所求答案.2、C【解析】試題分析:由得,,即是判斷函數(shù)與函數(shù)的圖象的交點情況.因為函數(shù)與函數(shù)的圖象只有一個交點所以方程只有一個實數(shù)根故選C.考點:函數(shù)的圖象點評:函數(shù)的圖象問題是初中數(shù)學的重點和難點,是中考常見題,在壓軸題中比較常見,要特別注意.3、B【解析】分析:根據(jù)位似變換的性質(zhì)計算即可.詳解:點P(m,n)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P的對應(yīng)點的坐標為(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故選B.點睛:本題考查的是位似變換、坐標與圖形的性質(zhì),在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標的比等于k或-k.4、B【解析】
由題意可知,等腰三角形有兩種情況:當a,b為腰時,a=b,由一元二次方程根與系數(shù)的關(guān)系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;當2為腰時,a=2(或b=2),此時2+b=6(或a+2=6),解得b=4(a=4),這時三邊為2,2,4,不符合三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,故不合題意.所以n只能為1.故選B5、A【解析】【分析】易得BC長為EF長的2倍,那么菱形ABCD的周長=4BC問題得解.【詳解】∵E是AC中點,∵EF∥BC,交AB于點F,∴EF是△ABC的中位線,∴BC=2EF=2×3=6,∴菱形ABCD的周長是4×6=24,故選A.【點睛】本題考查了三角形中位線的性質(zhì)及菱形的周長公式,熟練掌握相關(guān)知識是解題的關(guān)鍵.6、B【解析】解:畫樹狀圖得:∵共有6種等可能的結(jié)果,其中(1,-2),(3,-2)點落在第四項象限,∴P點剛好落在第四象限的概率==.故選B.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內(nèi)點的符號特點是解題的關(guān)鍵.7、A【解析】根據(jù)題意,可判斷出該幾何體為圓柱.且已知底面半徑以及高,易求表面積.解答:解:根據(jù)題目的描述,可以判斷出這個幾何體應(yīng)該是個圓柱,且它的底面圓的半徑為1,高為2,那么它的表面積=2π×2+π×1×1×2=6π,故選A.8、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應(yīng)用.9、C【解析】
根據(jù)函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數(shù)與x軸有一個交點,當m≠0時,函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關(guān)鍵是明確題意,利用分類討論的數(shù)學思想解答.10、A【解析】解:如圖,連接BE,設(shè)BE與AC交于點P′,∵四邊形ABCD是正方形,∴點B與D關(guān)于AC對稱,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最?。碢在AC與BE的交點上時,PD+PE最小,為BE的長度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故選A.點睛:此題考查了軸對稱﹣﹣最短路線問題,正方形的性質(zhì),要靈活運用對稱性解決此類問題.找出P點位置是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、60π【解析】
圓錐的側(cè)面積=π×底面半徑×母線長,把相應(yīng)數(shù)值代入即可求解.解:圓錐的側(cè)面積=π×6×10=60πcm1.12、6【解析】試題分析:由題意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,設(shè)AB=AO=OC=x,則有AC=2x,∠ACB=30°,在Rt△ABC中,根據(jù)勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,則AE=6故答案為6.13、(3,2).【解析】
根據(jù)題意得出y軸位置,進而利用正多邊形的性質(zhì)得出E點坐標.【詳解】解:如圖所示:∵A(0,a),∴點A在y軸上,∵C,D的坐標分別是(b,m),(c,m),∴B,E點關(guān)于y軸對稱,∵B的坐標是:(﹣3,2),∴點E的坐標是:(3,2).故答案為:(3,2).【點睛】此題主要考查了正多邊形和圓,正確得出y軸的位置是解題關(guān)鍵.14、1【解析】
直接利用偶次方的性質(zhì)以及二次根式的性質(zhì)分別化簡得出答案.【詳解】解:∵+(y﹣1018)1=0,∴x﹣1=0,y﹣1018=0,解得:x=1,y=1018,則x﹣1+y0=1﹣1+10180=1+1=1.故答案為:1.【點睛】此題主要考查了非負數(shù)的性質(zhì),正確得出x,y的值是解題關(guān)鍵.15、④【解析】
根據(jù)題意[x)表示大于x的最小整數(shù),結(jié)合各項進行判斷即可得出答案.【詳解】①[0)=1,故本項錯誤;②[x)?x>0,但是取不到0,故本項錯誤;③[x)?x?1,即最大值為1,故本項錯誤;④存在實數(shù)x,使[x)?x=0.5成立,例如x=0.5時,故本項正確.故答案是:④.【點睛】此題考查運算的定義,解題關(guān)鍵在于理解題意的運算法則.16、22.5°【解析】
四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質(zhì);等腰三角形的性質(zhì).三、解答題(共8題,共72分)17、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】
(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因為OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點的線段可分割成3個全等三角形,如圖3,連接各邊的中點可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【點睛】本題主要考查多邊形的綜合題,主要涉及的知識點:全等三角形的判定和性質(zhì)、多邊形內(nèi)角和、角平分線的性質(zhì)、等量代換、三角形的面積等,牢記并熟練運用這些知識點是解此類綜合題的關(guān)鍵。18、客房8間,房客63人【解析】
設(shè)該店有間客房,以人數(shù)相等為等量關(guān)系列出方程即可.【詳解】設(shè)該店有間客房,則解得答:該店有客房8間,房客63人.【點睛】本題考查的是利用一元一次方程解決應(yīng)用題,根據(jù)題意找到等量關(guān)系式是解題的關(guān)鍵.19、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關(guān)于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.20、(1)乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米.(2)10天.【解析】
(1)設(shè)乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據(jù)工作時間=工作總量÷工作效率結(jié)合甲隊改造360米的道路比乙隊改造同樣長的道路少用3天,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)設(shè)安排甲隊工作m天,則安排乙隊工作天,根據(jù)總費用=甲隊每天所需費用×工作時間+乙隊每天所需費用×工作時間結(jié)合總費用不超過145萬元,即可得出關(guān)于m的一元一次不等式,解之取其中的最大值即可得出結(jié)論.【詳解】(1)設(shè)乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據(jù)題意得:,解得:x=40,經(jīng)檢驗,x=40是原分式方程的解,且符合題意,∴x=×40=60,答:乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米;(2)設(shè)安排甲隊工作m天,則安排乙隊工作天,根據(jù)題意得:7m+5×≤145,解得:m≥10,答:至少安排甲隊工作10天.【點睛】本題考查了分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出分式方程;(2)根據(jù)各數(shù)量間的關(guān)系,正確列出一元一次不等式.21、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】
1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據(jù)tan∠AOC的值,設(shè)AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出A坐標,將A坐標代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標;(2)由A與B交點橫坐標,根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長求出OP的長,即可確定出P的坐標.【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設(shè)AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時,△PDC∽△ODC;當PC⊥CD,即∠PCD=90°時,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時P坐標為(0,),綜上,滿足題意P的坐標為(0,)或(0,0).【點睛】此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點問題,坐標與圖形性質(zhì),勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質(zhì),利用了數(shù)形結(jié)合的思想,熟練運用數(shù)形結(jié)合思想是解題的關(guān)鍵.22、(Ⅰ)16;66;(Ⅱ)當x≤15時,y=4x;當x>15時,y=6x﹣30;(Ⅲ)居民甲上月用水量為18噸,居民乙用水12噸【解析】
(Ⅰ)根據(jù)題意計算即可;(Ⅱ)根據(jù)分段函數(shù)解答即可;(Ⅲ)根據(jù)題意,可以分段利用方程或方程組解決用水量問題.【詳解】解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年旅游公司浮動抵押合同
- 個人住宅租借押金及季度租金合同樣本(2024版)一
- 二零二五年度專業(yè)印刷品設(shè)計、印刷與打印服務(wù)合同3篇
- 事業(yè)單位基本建設(shè)粉刷工程分包合同2024版B版
- 2025年度烘焙連鎖面包磚供應(yīng)鏈合作協(xié)議4篇
- 二零二五年度干股虛擬股分紅激勵方案合同范本
- 2025年度玩具貨物運輸委托服務(wù)協(xié)議
- 二零二五年度物業(yè)小區(qū)個人承包社區(qū)物業(yè)服務(wù)綜合解決方案協(xié)議
- 2025年度家用空調(diào)拆裝安全操作規(guī)范及應(yīng)急處理合同
- 二零二五年度家政服務(wù)公司保姆雇傭協(xié)議
- 海外資管機構(gòu)赴上海投資指南(2024版)
- 山東省青島市2023-2024學年七年級上學期期末考試數(shù)學試題(含答案)
- 墓地銷售計劃及方案設(shè)計書
- 從偏差行為到卓越一生3.0版
- 優(yōu)佳學案七年級上冊歷史
- 鋁箔行業(yè)海外分析
- 紀委辦案安全培訓課件
- 超市連鎖行業(yè)招商策劃
- 城市道路智慧路燈項目 投標方案(技術(shù)標)
- 【公司利潤質(zhì)量研究國內(nèi)外文獻綜述3400字】
- 工行全國地區(qū)碼
評論
0/150
提交評論