




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
3.5.2簡單線性規(guī)劃1/321:畫出不等式(組)表示平面區(qū)域:⑴y≥2x+1⑵4x-3y>9x+2y<4說明:直線定界、特殊點定域劃分區(qū)域時,找好特殊點,注意不等號。y=2x+1x+2y=4o-1yx112233-2xo123-1-2-3y4x-3y=92/323x+5y≤25x-4y≤-3x≥1在該平面區(qū)域上
問題1:x有沒有最大(小)值?問題2:y有沒有最大(小)值?xyox-4y=-33x+5y=25x=1問題3:2x+y有沒有最大(小)值?CAB3/32引例
設(shè)z=2x+y,式中變量x、y滿足以下條件.求z最大值和最小值.4/32xyO1234567654321ABC
分析:不等式組表示區(qū)域是圖中
ABC.z=2x+y5/32xyO1234567654321ABCl2l1求最值方法1.
截距法
在經(jīng)過不等式組表示公共區(qū)域內(nèi)點且平行于l0直線中,以經(jīng)過點A(5,2)直線
l2
所對應(yīng)截距最大故zmax=2×5+2=12,以經(jīng)過點B(1,1)直線l1所對應(yīng)z最小故zmin=2×1+1=3.6/32xyO1234567654321ABC思索:2x+y-z=0(z
R)可看作什么?
一組平行直線,都與直線l0:2x+y=0平行.求最值方法2.距離法
7/32xyO1234567654321ABC
作一組與直線l0平行直線(或平行移動直線l0)l:2x+y=z,z
R.
求最值方法2.距離法
8/32xyO1234567654321ABC
在經(jīng)過不等式組所表示公共區(qū)域內(nèi)點且平行于l直線中,以經(jīng)過點A(5,2)直線l2所對應(yīng)d最大,l2求最值方法2.距離法
9/32
以經(jīng)過點B(1,1)直線l1所對應(yīng)d最小.所以:zmax=2×5+2=12,zmin=2×1+1=3.xyO1234567654321ABCl2l1求最值方法2.距離法
10/32
在上述問題中,不等式組是一組對變量x、y約束條件,因為這組約束條件都是關(guān)于x、y一次不等式,所以又可稱其為線性約束條件.z=2x+y是欲到達最大值或最小值所包括變量x、y解析式,我們把它稱為目標函數(shù).因為z=2x+y又是關(guān)于x、y一次解析式,所以又可叫做線性目標函數(shù).線性規(guī)劃相關(guān)概念:11/32線性規(guī)劃概念:問題:設(shè)z=2x+y,式中變量滿足以下條件: 求z最大值與最小值。
目標函數(shù)(線性目標函數(shù))線性約束條件12/32
注意:線性約束條件除了用一次不等式表示外,也可用一次方程表示.普通地,求線性目標函數(shù)在線性約束條件下最大值或最小值問題,統(tǒng)稱為線性規(guī)劃問題.比如:我們剛才研究就是求線性目標函數(shù)z=2x+y在線性約束條件下最大值和最小值問題,即為線性規(guī)劃問題.線性規(guī)劃相關(guān)概念:13/32
滿足線性約束條件解(x,y)叫做可行解,由全部可行解組成集合叫做可行域.在上述問題中,可行域就是陰影部分表示三角形區(qū)域.其中可行解(5,2)和(1,1)分別使目標函數(shù)取得最大值和最小值,它們都叫做這個問題最優(yōu)解.線性規(guī)劃相關(guān)概念:14/32解線性規(guī)劃問題基本步驟:
第一步在平面直角坐標系中畫出可行域.第二步:平移直線在可行域內(nèi)找出最優(yōu)解所對應(yīng)點(找使縱截距取得最值時點).第三步:解方程組,從而求出目標函數(shù)最大值或最小值.簡記為:
畫….移….求15/32
例1已知x、y滿足,試求z=300x+900y最大值.經(jīng)典例題:
分析:先畫出平面區(qū)域,然后在平面區(qū)域內(nèi)尋找使z=300x+900y取最大值時點.16/32
例1已知x、y滿足,試求z=300x+900y最大值.經(jīng)典例題:
解:作出可行域,見圖中四邊形AOBC表示平面區(qū)域.x+2y=2502x+y=300xy250150COBA17/32經(jīng)典例題:
作出直線l0:300x+900y=0,即x+3y=0,將它平移至點A,顯然,點A坐標是可行域中最優(yōu)解,它使z=300x+900y到達最大值.易得點A(0,125),所以zmax=300×0+900×125=112500.l0:x+3y=0xy250150COBAx+2y=2502x+y=30018/32經(jīng)典例題:
變題1:在例1中,若目標函數(shù)設(shè)為z=400x+300y,約束條件不變,則z最大值在點C處取得.l0:4x+3y=0xy250150COBAx+2y=2502x+y=300
變題2:若目標函數(shù)設(shè)為z=300x+600y,約束條件不變,則z最大值?可在線段AC上任一點處取得.19/32
實際上,可行域內(nèi)最優(yōu)解對應(yīng)點在何處,與目標函數(shù)z=ax+by(a
0,b
0)所確定直線l0:ax+by=0斜率(
)相關(guān).就本例而言,若
=
(直線x+2y=250斜率),則線段AC上全部點都使z取得最大值(如:z=300x+600y時);20/32
當
<
<0時,點A處使z取得最大值(比如:例1);當
2<
<
時,點C處使z取得最大值(比如:z=400x+300y時),其它情況請同學(xué)們課外思索.21/32BCxyox-4y=-33x+5y=25x=1A
例2:設(shè)z=2x-y,式中變量x、y滿足以下條件求z最大值和最小值。3x+5y≤25x
-4y≤-3x≥1解:作出可行域如圖:當z=0時,設(shè)直線l0:2x-y=0
當l0經(jīng)過可行域上點A時,-z最小,即z最大。
當l0經(jīng)過可行域上點C時,-z最大,即z最小。由得A點坐標_____;
x-4y=-3
3x+5y=25由得C點坐標_______;
x=1
3x+5y=25∴zmax=2×5-2=8zmin=2×1-4.4=
-2.4(5,2)(5,2)(1,4.4)(1,4.4)平移l0,平移l0
,(5,2)2x-y=0(1,4.4)(5,2)(1,4.4)22/32轉(zhuǎn)化轉(zhuǎn)化轉(zhuǎn)化三個轉(zhuǎn)化圖解法想一想(結(jié)論):線性約束條件可行域線性目標函數(shù)Z=Ax+By一組平行線最優(yōu)解尋找平行線組
最大(小)縱截距求最值方法:1,距離法;2,截距法.23/321.(年高考(遼寧文理))設(shè)變量x,y滿足則2x+3y最大值為()A.20 B.35 C.45 D.551.【答案】D【解析】畫出可行域,依據(jù)圖形可知當x=5,y=15時2x+3y最大,最大值為55,故選DD24/322.(年高考(天津文))設(shè)變量滿足約束條件則目標函數(shù)最小值()
A.-5 B.-4 C.-2 D.3【解析】做出不等式對應(yīng)可行域如圖,由圖象可知當直線經(jīng)過點時,直線截距最大,而此時最小為,選B.B25/323.(年高考(浙江文))設(shè)z=x+2y,其中實數(shù)x,y滿足,則z取值范圍是
_______________.【解析】利用不等式組,作出可行域,可知區(qū)域表示四邊形,
但目標函數(shù)過點(0,0)時,目標函數(shù)最小,當目標函數(shù)過點時最大值為.[0,]26/321.求z=600x+300y最大值,使式中x,y滿足約束條件.附加練習(xí)
分析:畫出約束條件表示平面區(qū)域即可行域再解.xyO252100CBA3x+y=300x+2y=2522x+y=0zmax
=600×70+300×90=69000.27/322.已知x、y滿足不等式組求z=3x+y最小值.附加練習(xí)分析:可先找出可行域,平行移動直線l0:3x+y=0,找出可行解,進而求出目標函數(shù)最小值.zmin
=1.2x+y=1xy20.5OPx+2y=2l0:3x+y=028/32
3.滿足線性約束條件可行域內(nèi)共有_______個整數(shù)點.4
4.設(shè)z=x
y,式中變量x,y滿足求z最大值和最小值.zmax=1,zmin=
3.附加練習(xí):29/32
(1)求z=2x+y最大值,使式中x、y
滿足約束條件附加練習(xí)5小結(jié)xy(12,12)(-1,-1)(2,-1)2x+y=0x+y-1=0x-y=0CBAO21-1-2-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 邵陽市重點中學(xué)2024-2025學(xué)年初三5月畢業(yè)班模擬考試數(shù)學(xué)試題含解析
- 江蘇省鹽城市響水實驗、一中學(xué)2025屆初三下學(xué)期零診模擬生物試題含解析
- 廊坊衛(wèi)生職業(yè)學(xué)院《成衣制作工藝》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西師范大學(xué)科學(xué)技術(shù)學(xué)院《prote軟件設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 延壽縣2025屆數(shù)學(xué)四年級第二學(xué)期期末質(zhì)量檢測模擬試題含解析
- 天府新區(qū)航空旅游職業(yè)學(xué)院《歐美設(shè)計規(guī)范釋義一雙語》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津石油職業(yè)技術(shù)學(xué)院《珠寶專業(yè)英語》2023-2024學(xué)年第二學(xué)期期末試卷
- 塔里木職業(yè)技術(shù)學(xué)院《測井資料解釋課程設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 遼寧稅務(wù)高等??茖W(xué)校《影像診斷學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 文山壯族苗族自治州馬關(guān)縣2024-2025學(xué)年數(shù)學(xué)三下期末綜合測試模擬試題含解析
- 美國學(xué)生閱讀技能訓(xùn)練
- 網(wǎng)絡(luò)安全服務(wù)項目服務(wù)質(zhì)量保障措施(實施方案)
- 生產(chǎn)加工型小微企業(yè)安全管理考試(含答案)
- 青少年科技創(chuàng)新比賽深度分析
- 世界近代武器革新圖鑒(1722-1900)英國篇
- 安標受控件采購管理制度
- 亞低溫的治療與護理
- 危險化學(xué)品企業(yè)設(shè)備完整性 第2部分 技術(shù)實施指南 編制說明
- 防高墜自查自糾臺賬
- GB/T 4437.1-2023鋁及鋁合金熱擠壓管第1部分:無縫圓管
- 市政工程消耗量定額 zya1-31-2015
評論
0/150
提交評論