遼寧省沈陽市第31中學2023-2024學年高考數(shù)學必刷試卷含解析_第1頁
遼寧省沈陽市第31中學2023-2024學年高考數(shù)學必刷試卷含解析_第2頁
遼寧省沈陽市第31中學2023-2024學年高考數(shù)學必刷試卷含解析_第3頁
遼寧省沈陽市第31中學2023-2024學年高考數(shù)學必刷試卷含解析_第4頁
遼寧省沈陽市第31中學2023-2024學年高考數(shù)學必刷試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省沈陽市第31中學2023-2024學年高考數(shù)學必刷試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.2.已知雙曲線的一條漸近線經過圓的圓心,則雙曲線的離心率為()A. B. C. D.23.一個超級斐波那契數(shù)列是一列具有以下性質的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.64.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個5.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若點在角的終邊上,則()A. B. C. D.6.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.37.已知,滿足條件(為常數(shù)),若目標函數(shù)的最大值為9,則()A. B. C. D.8.若均為任意實數(shù),且,則的最小值為()A. B. C. D.9.如圖網格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.10.將函數(shù)的圖像向右平移個單位長度,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.11.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且12.復數(shù)的共軛復數(shù)記作,已知復數(shù)對應復平面上的點,復數(shù):滿足.則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若、滿足約束條件,則的最小值為______.14.已知函數(shù),若函數(shù)有個不同的零點,則的取值范圍是___________.15.如圖所示梯子結構的點數(shù)依次構成數(shù)列,則________.16.各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內,每售出1盒該產品獲利50元,未售出的產品,每盒虧損30元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季進了160盒該產品,以(單位:盒,)表示這個開學季內的市場需求量,(單位:元)表示這個開學季內經銷該產品的利潤.(1)根據直方圖估計這個開學季內市場需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開學季利潤不少于4800元的概率.18.(12分)已知函數(shù).(Ⅰ)求在點處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數(shù)在上的零點個數(shù).19.(12分)設函數(shù).(1)當時,求不等式的解集;(2)若不等式恒成立,求實數(shù)a的取值范圍.20.(12分)在平面直角坐標系中,曲線(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.21.(12分)已知動圓恒過點,且與直線相切.(1)求圓心的軌跡的方程;(2)設是軌跡上橫坐標為2的點,的平行線交軌跡于,兩點,交軌跡在處的切線于點,問:是否存在實常數(shù)使,若存在,求出的值;若不存在,說明理由.22.(10分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,射線與曲線交于點,將射線繞極點逆時針方向旋轉交曲線于點.(1)求曲線的參數(shù)方程;(2)求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

依照偶函數(shù)的定義,對定義域內的任意實數(shù),f(﹣x)=f(x),且定義域關于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據偶函數(shù)的定義域關于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點睛】本題考查偶函數(shù)的定義,對定義域內的任意實數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關于原點對稱,定義域區(qū)間兩個端點互為相反數(shù).2、B【解析】

求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.3、A【解析】

根據定義,表示出數(shù)列的通項并等于2020.結合的正整數(shù)性質即可確定解的個數(shù).【詳解】由題意可知首項為2,設第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當?shù)闹悼梢詾?;即?個這種超級斐波那契數(shù)列,故選:A.【點睛】本題考查了數(shù)列新定義的應用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.4、C【解析】

計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.5、D【解析】

由題知,又,代入計算可得.【詳解】由題知,又.故選:D【點睛】本題主要考查了三角函數(shù)的定義,誘導公式,二倍角公式的應用求值.6、A【解析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.7、B【解析】

由目標函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據目標函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標,然后根據分析列出一個含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標函數(shù)的最大值為9,可得直線與直線的交點,使目標函數(shù)取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.8、D【解析】

該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結合圖形,可以斷定那個點應該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結果.【詳解】由題意可得,其結果應為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結果為,故選D.【點睛】本題考查函數(shù)在一點處切線斜率的應用,考查圓的程,兩條直線垂直的斜率關系,屬中檔題.9、C【解析】

利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關鍵,屬于基礎題.10、C【解析】

根據三角函數(shù)的變換規(guī)則表示出,根據是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數(shù)的圖像,,因為是奇函數(shù),所以,解得,因為,所以的最小值為.故選:【點睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質,屬于基礎題.11、D【解析】

首先把三視圖轉換為幾何體,根據三視圖的長度,進一步求出個各棱長.【詳解】根據幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.12、A【解析】

根據復數(shù)的幾何意義得出復數(shù),進而得出,由得出可計算出,由此可計算出.【詳解】由于復數(shù)對應復平面上的點,,則,,,因此,.故選:A.【點睛】本題考查復數(shù)模的計算,考查了復數(shù)的坐標表示、共軛復數(shù)以及復數(shù)的除法,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數(shù)取得最小時對應的最優(yōu)解,代入目標函數(shù)計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,考查數(shù)形結合思想的應用,屬于基礎題.14、【解析】

作出函數(shù)的圖象及直線,如下圖所示,因為函數(shù)有個不同的零點,所以由圖象可知,,,所以.15、【解析】

根據圖像歸納,根據等差數(shù)列求和公式得到答案.【詳解】根據圖像:,,故,故.故答案為:.【點睛】本題考查了等差數(shù)列的應用,意在考查學生的計算能力和應用能力.16、【解析】

將已知由前n項和定義整理為,再由等比數(shù)列性質求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【點睛】本題考查在等比數(shù)列中由前n項和關系求公比,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),眾數(shù)為150;(2);(3)【解析】

(1)由頻率直方圖分別求出各組距內的頻率,由此能求出這個開學季內市場需求量的眾數(shù)和平均數(shù);(2)由已知條件推導出當時,,當時,,由此能將表示為的函數(shù);(3)利用頻率分布直方圖能求出利潤不少于4800元的概率.【詳解】(1)由直方圖可估計需求量的眾數(shù)為150,由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:∴估計需求量的平均數(shù)為:(2)當時,當時,∴(3)由(2)知當時,當時,得∴開學季利潤不少于4800元的需求量為由頻率分布直方圖可所求概率【點睛】本題考查頻率分布直方圖的應用,考查函數(shù)解析式的求法,考查概率的估計,是中檔題,解題時要注意頻率分布直方圖的合理運用.18、(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)函數(shù)在有3個零點.【解析】

(Ⅰ)求出導數(shù),寫出切線方程;(Ⅱ)二次求導,判斷單調遞減,結合零點存在性定理,判斷即可;(Ⅲ),數(shù)形結合得出結論.【詳解】解:(Ⅰ),,,故在點,處的切線方程為,即;(Ⅱ)證明:,,,故在遞減,又,,由零點存在性定理,存在唯一一個零點,,當時,遞增;當時,遞減,故在只有唯一的一個極大值;(Ⅲ)函數(shù)在有3個零點.【點睛】本題主要考查利用導數(shù)求切線方程,考查零點存在性定理的應用,關鍵是能夠通過導函數(shù)的單調性和零點存在定理確定導函數(shù)的零點個數(shù),進而確定函數(shù)的單調性,屬于難題.19、(1)(2)【解析】

(1)利用分段討論法去掉絕對值,結合圖象,從而求得不等式的解集;(2)求出函數(shù)的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當時,則所以不等式的解集為.(2)等價于,而,故等價于,所以或,即或,所以實數(shù)a的取值范圍為.【點睛】本題考查含有絕對值的不等式解法、不等式恒成立問題,考查函數(shù)與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度一般.20、(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設為曲線上一點,點到曲線的圓心的距離,結合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標方程為,∴曲線的普通方程為,即.(2)設為曲線上一點,則點到曲線的圓心的距離.∵,∴當時,d有最大值.又∵P,Q分別為曲線,曲線上動點,∴的最大值為.21、(1);(2)存在,.【解析】

(1)根據拋物線的定義,容易知其軌跡為拋物線;結合已知點的坐標,即可求得方程;(2)由拋物線方程求得點的坐標,設出直線的方程,利用導數(shù)求得點的坐標,聯(lián)立直線的方程和拋物線方程,結合韋達定理,求得,進而求得與之間的大小關系,即可求得參數(shù).【詳解】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論