下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高一數(shù)學(xué)重要知識(shí)點(diǎn)蘇教版(2)1/1高一數(shù)學(xué)重要知識(shí)點(diǎn)蘇教版(2)全文共1頁(yè),當(dāng)前為第1頁(yè)。高一數(shù)學(xué)重要知識(shí)點(diǎn)蘇教版高一數(shù)學(xué)重要知識(shí)點(diǎn)蘇教版(2)全文共1頁(yè),當(dāng)前為第1頁(yè)。學(xué)問(wèn)是一座寶庫(kù),而實(shí)踐就是開(kāi)啟寶庫(kù)的鑰匙。學(xué)習(xí)任何學(xué)科,不僅需要大量的記憶,還需要大量的練習(xí),從而到達(dá)穩(wěn)固學(xué)問(wèn)的效果。下面是我給大家整理的一些〔高一數(shù)學(xué)〕的學(xué)問(wèn)點(diǎn),希望對(duì)大家有所關(guān)懷。
高一數(shù)學(xué)必修一學(xué)問(wèn)點(diǎn)梳理
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α180°。
理解:
(1)留意“兩個(gè)方向”:直線向上的方向、x軸的正方向;
(2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。
意義:
①直線的傾斜角,表達(dá)了直線對(duì)x軸正向的傾斜程度;
②在平面直角坐標(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;
③傾斜角相同,未必表示同一條直線。
公式:
k=tanα
k0時(shí)α∈(0°,90°)
k0時(shí)α∈(90°,180°)
k=0時(shí)α=0°
當(dāng)α=90°時(shí)k不存在
ax+by+c=0(a≠0)傾斜角為A,
則tanA=-a/b,
A=arctan(-a/b)
當(dāng)a≠0時(shí),
傾斜角為90度,即與X軸垂直
人教版高一數(shù)學(xué)必修一學(xué)問(wèn)點(diǎn)5
1.“包含”關(guān)系—子集
留意:有兩種可能
(1)A是B的一部分
(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”
結(jié)論:對(duì)于兩個(gè)集合A與B,假如集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
①任何一個(gè)集合是它本身的子集。AíA
②真子集:假如AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
③假如AíB,BíC,那么AíC
④假如AíB同時(shí)BíA那么A=B
高一數(shù)學(xué)重要知識(shí)點(diǎn)蘇教版(2)全文共2頁(yè),當(dāng)前為第2頁(yè)。3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
高一上冊(cè)數(shù)學(xué)必修一學(xué)問(wèn)點(diǎn)梳理
兩個(gè)平面的位置關(guān)系:
(1)兩個(gè)平面互相平行的定義:空間兩平面沒(méi)有公共點(diǎn)
(2)兩個(gè)平面的位置關(guān)系:
兩個(gè)平面平行沒(méi)有公共點(diǎn);兩個(gè)平〔面相〕交有一條公共直線。
a、平行
兩個(gè)平面平行的判定定理:假如一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。
兩個(gè)平面平行的性質(zhì)定理:假如兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。
b、相交
二面角
(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個(gè)半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.兩平面垂直
兩平面垂直的定義:兩平面相交,假如所成的角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。記為⊥
兩平面垂直的判定定理:假如一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直
兩個(gè)平面垂直的性質(zhì)定理:假如兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。
高一數(shù)學(xué)必修五學(xué)問(wèn)點(diǎn)〔總結(jié)〕
⑴公差為d的等差數(shù)列,各項(xiàng)同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.
⑵公差為d的等差數(shù)列,各項(xiàng)同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.
⑶若{a}、為等差數(shù)列,則{a±b}與{ka+b}(k、b為非零常數(shù))也是等差數(shù)列.
⑷對(duì)任何m、n,在等差數(shù)列{a}中有:a=a+(n-m)d,特別地,當(dāng)m=1時(shí),便得等差數(shù)列的通項(xiàng)公式,此式較等差數(shù)列的通項(xiàng)公式更具有一般性.
⑸、一般地,假如l,k,p,…,m,n,r,…皆為自然數(shù),且l+k+p+…=m+n+r+…(兩邊的自然數(shù)個(gè)數(shù)相等),那么當(dāng){a}為等差數(shù)列時(shí),有:a+a+a+…=a+a+a+….
⑹公差為d的等差數(shù)列,從中取出等距離的項(xiàng),構(gòu)成一個(gè)新數(shù)列,此數(shù)列仍是等差數(shù)列,其公差為kd(k為取出項(xiàng)數(shù)之差).
⑺假如{a}是等差數(shù)列,公差為d,那么,a,a,…,a、a也是等差數(shù)列,其公差為-d;在等差數(shù)列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差數(shù)列中,從第一項(xiàng)起,每一項(xiàng)(有窮數(shù)列末項(xiàng)除外)都是它前后兩項(xiàng)的高一數(shù)學(xué)重要知識(shí)點(diǎn)蘇教版(2)全文共3頁(yè),當(dāng)前為第3頁(yè)。等差中項(xiàng).
⑼當(dāng)公差d0時(shí),等差數(shù)列中的數(shù)隨項(xiàng)數(shù)的增大而增大;當(dāng)d0時(shí),等差數(shù)列中的數(shù)隨項(xiàng)數(shù)的削減而減小;d=0時(shí),等差數(shù)列中的數(shù)等于一個(gè)常數(shù).
⑽設(shè)a,a,a為等差數(shù)列中的三項(xiàng),且a與a,a與a的項(xiàng)距差之比=(≠-1),則a=.
⑴數(shù)列{a}為等差數(shù)列的充要條件是:數(shù)列{a}的前n項(xiàng)和S可以寫(xiě)成S=an+bn的形式(其中a、b為常數(shù)).
⑵在等差數(shù)列{a}中,當(dāng)項(xiàng)數(shù)為2n(nN)時(shí),S-S=nd,=;當(dāng)項(xiàng)數(shù)為(2n-1)(n)時(shí),S-S=a,=.
⑶若數(shù)列{a}為等差數(shù)列,則S,S-S,S-S,…照舊成等差數(shù)列,公差為.
⑷若兩個(gè)等差數(shù)列{a}、的前n項(xiàng)和分別是S、T(n為奇數(shù)),則=.
⑸在等差數(shù)列{a}中,S=a,S=b(nm),則S=(a-b).
⑹等差數(shù)列{a}中,是n的一次函數(shù),且點(diǎn)(n,)均在直線y=x+(a-)上.
⑺記等差數(shù)列{a}的前n項(xiàng)和為S.①若a0,公差d0,則當(dāng)a≥0且a≤0時(shí),S;②若a0,公差d0,則當(dāng)a≤0且a≥0時(shí),S最小.
高一數(shù)學(xué)重要學(xué)問(wèn)點(diǎn)蘇教版相關(guān)〔文章〕:
★高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)蘇教版
★高一數(shù)學(xué)學(xué)習(xí)方法和技巧大全
★蘇教版高中必修二數(shù)學(xué)學(xué)問(wèn)點(diǎn)
★2021高一必修二數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)
★期末復(fù)習(xí)方
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025個(gè)人租房合同協(xié)議書(shū)簡(jiǎn)易版
- 醫(yī)療衛(wèi)生大樓建設(shè)合同
- 高空港口運(yùn)營(yíng)安全合同
- 宅基地使用權(quán)使用權(quán)糾紛調(diào)解協(xié)議
- 教育設(shè)施招投標(biāo)與合同管理探討
- 食品安全快速配送承諾
- 機(jī)械設(shè)備制造防水保溫施工協(xié)議
- 2025上海房屋轉(zhuǎn)租合同模式
- 公路立交小橋施工合同
- 2025人事聘用版合同
- 2023年上海市市高考物理一模試卷含解析
- 市政工程人行道維修方案
- 西方政治制度史ppt-西方政治制度史Historyof課件
- 初中英語(yǔ)期末考試方法與技巧課件
- 馬克思恩格斯傳略課件
- 油煙管道清洗服務(wù)承諾書(shū)
- 卷積神經(jīng)網(wǎng)絡(luò)講義課件
- 安全注射培訓(xùn)考核試題及答案
- 汽車機(jī)械基礎(chǔ)課件第五單元機(jī)械傳動(dòng)任務(wù)二 鏈傳動(dòng)
- 自動(dòng)化包裝流水線解決方案
- 水利五大員施工員教材講義
評(píng)論
0/150
提交評(píng)論