版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年廣西南寧市外國語學(xué)校高三考前熱身數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.52.生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識技藝過人,這里的“六藝”其實(shí)源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚(yáng)中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為()A. B. C. D.3.如圖,正四面體的體積為,底面積為,是高的中點(diǎn),過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,4.已知函數(shù),,的零點(diǎn)分別為,,,則()A. B.C. D.5.已知等差數(shù)列的公差為,前項(xiàng)和為,,,為某三角形的三邊長,且該三角形有一個(gè)內(nèi)角為,若對任意的恒成立,則實(shí)數(shù)().A.6 B.5 C.4 D.36.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.7.已知數(shù)列的前項(xiàng)和為,且,,則()A. B. C. D.8.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.10.已知等差數(shù)列的前n項(xiàng)和為,且,,若(,且),則i的取值集合是()A. B. C. D.11.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.12.已知曲線且過定點(diǎn),若且,則的最小值為().A. B.9 C.5 D.二、填空題:本題共4小題,每小題5分,共20分。13.高三(1)班共有56人,學(xué)號依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個(gè)容量為4的樣本,已知學(xué)號為6,34,48的同學(xué)在樣本中,那么還有一個(gè)同學(xué)的學(xué)號應(yīng)為.14.隨著國力的發(fā)展,人們的生活水平越來越好,我國的人均身高較新中國成立初期有大幅提高.為了掌握學(xué)生的體質(zhì)與健康現(xiàn)狀,合理制定學(xué)校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進(jìn)行了一次全市高中男生身高統(tǒng)計(jì)調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為__________.15.一個(gè)袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),從中任意摸取3個(gè)小球,每個(gè)小球被取出的可能性相等,則取出的3個(gè)小球中數(shù)字最大的為4的概率是__.16.在中,內(nèi)角所對的邊分別是,若,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點(diǎn).(1)求證:平面;(2)求二面角的正弦值.18.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.19.(12分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,,.求數(shù)列,的通項(xiàng)公式;若數(shù)列滿足,求的前項(xiàng)和.20.(12分)已知函數(shù)和的圖象關(guān)于原點(diǎn)對稱,且.(1)解關(guān)于的不等式;(2)如果對,不等式恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線與曲線交于,兩點(diǎn),求的值.22.(10分)設(shè)為實(shí)數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模2、C【解析】
分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開的事件個(gè)數(shù),不考慮限制因素,總數(shù)有種,進(jìn)而得到結(jié)果.【詳解】當(dāng)“數(shù)”位于第一位時(shí),禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當(dāng)“數(shù)”在第二位時(shí),禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種,故滿足條件的事件的概率為:故答案為:C.【點(diǎn)睛】解排列組合問題要遵循兩個(gè)原則:①按元素(或位置)的性質(zhì)進(jìn)行分類;②按事情發(fā)生的過程進(jìn)行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).3、A【解析】
設(shè),取與重合時(shí)的情況,計(jì)算出以及的值,利用排除法可得出正確選項(xiàng).【詳解】如圖所示,利用排除法,取與重合時(shí)的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時(shí),,,排除B、D選項(xiàng);因?yàn)?,,此時(shí),,當(dāng)平面平面時(shí),,,排除C選項(xiàng).故選:A.【點(diǎn)睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計(jì)算公式、排除法,考查了空間想象能力、推理能力與計(jì)算能力,屬于難題.4、C【解析】
轉(zhuǎn)化函數(shù),,的零點(diǎn)為與,,的交點(diǎn),數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點(diǎn),即為與,,的交點(diǎn),作出與,,的圖象,如圖所示,可知故選:C【點(diǎn)睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點(diǎn),考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.5、C【解析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時(shí)的n即可.【詳解】由已知,,又三角形有一個(gè)內(nèi)角為,所以,,解得或(舍),故,當(dāng)時(shí),取得最大值,所以.故選:C.【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和的最值問題,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.6、B【解析】
奇函數(shù)滿足定義域關(guān)于原點(diǎn)對稱且,在上即可.【詳解】A:因?yàn)槎x域?yàn)?,所以不可能時(shí)奇函數(shù),錯誤;B:定義域關(guān)于原點(diǎn)對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點(diǎn)對稱,且滿足奇函數(shù),,在上,因?yàn)?,所以在上不是增函?shù),錯誤;D:定義域關(guān)于原點(diǎn)對稱,且,滿足奇函數(shù),在上很明顯存在變號零點(diǎn),所以在上不是增函數(shù),錯誤;故選:B【點(diǎn)睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點(diǎn)對稱,屬于簡單題目.7、C【解析】
根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項(xiàng)公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項(xiàng)為,第二項(xiàng)為,所以公比為.所以,所以.故選:C【點(diǎn)睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項(xiàng)公式,屬于基礎(chǔ)題.8、B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為,位于第二象限.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.9、A【解析】
根據(jù)橢圓與雙曲線離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進(jìn)而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡可得,故選:A.【點(diǎn)睛】本題考查了橢圓與雙曲線簡單幾何性質(zhì)應(yīng)用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎(chǔ)題.10、C【解析】
首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.11、C【解析】
利用對數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計(jì)算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點(diǎn)睛】本題考查對數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時(shí)選擇合適的中間值比較是關(guān)鍵,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.12、A【解析】
根據(jù)指數(shù)型函數(shù)所過的定點(diǎn),確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點(diǎn)為,,當(dāng)且僅當(dāng)時(shí)等號成立,即時(shí)取得最小值.故選:A【點(diǎn)睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計(jì)算能力,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、20【解析】
根據(jù)系統(tǒng)抽樣的定義將56人按順序分成4組,每組14人,則1至14號為第一組,15至28號為第二組,29號至42號為第三組,43號至56號為第四組.而學(xué)號6,34,48分別是第一、三、四組的學(xué)號,所以還有一個(gè)同學(xué)應(yīng)該是15+6-1=20號,故答案為20.14、3000【解析】
根據(jù)正態(tài)曲線的對稱性求出,進(jìn)而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.【點(diǎn)睛】本題考查正態(tài)曲線的對稱性的應(yīng)用,是基礎(chǔ)題.15、【解析】
由題,得滿足題目要求的情況有,①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選和②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選,一共有種情況;②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個(gè)小球,有種情況,所以取出的3個(gè)小球中數(shù)字最大的為4的概率.故答案為:【點(diǎn)睛】本題主要考查古典概型與組合的綜合問題,考查學(xué)生分析問題和解決問題的能力.16、【解析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點(diǎn)睛】本小題主要考查正弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查三角形的內(nèi)角和定理,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)取的中點(diǎn),連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值,進(jìn)而可求得其正弦值.【詳解】(1)取中點(diǎn),連接、、,且,四邊形為平行四邊形,且,、分別為、中點(diǎn),且,則四邊形為平行四邊形,且,且,且,所以,四邊形為平行四邊形,且,四邊形為平行四邊形,,平面,平面,平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、,,,,設(shè)平面的法向量為,由,得,取,則,,,設(shè)平面的法向量為,由,得,取,則,,,,,因此,二面角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了利用空間向量法求解二面角,考查推理能力與計(jì)算能力,屬于中等題.18、(1);(2)【解析】
(1)根據(jù)遞推公式,用配湊法構(gòu)造等比數(shù)列,求其通項(xiàng)公式,進(jìn)而求出的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,利用錯位相減法求數(shù)列的前項(xiàng)和.【詳解】解:(1),,是首項(xiàng)為,公比為的等比數(shù)列.所以,.(2).【點(diǎn)睛】本題考查了由數(shù)列的遞推公式求通項(xiàng)公式,錯位相減法求數(shù)列的前n項(xiàng)和的問題,屬于中檔題.19、,;.【解析】
由,公差,有,,成等比數(shù)列,所以,解得.進(jìn)而求出數(shù)列,的通項(xiàng)公式;當(dāng)時(shí),由,所以,當(dāng)時(shí),由,,可得,進(jìn)而求出前項(xiàng)和.【詳解】解:由題意知,,公差,有1,,成等比數(shù)列,所以,解得.所以數(shù)列的通項(xiàng)公式.?dāng)?shù)列的公比,其通項(xiàng)公式.當(dāng)時(shí),由,所以.當(dāng)時(shí),由,,兩式相減得,所以.故所以的前項(xiàng)和,.又時(shí),,也符合上式,故.【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列的概念,通項(xiàng)公式,前項(xiàng)和公式的應(yīng)用等基礎(chǔ)知識;考查運(yùn)算求解能力,方程思想,分類討論思想,應(yīng)用意識,屬于中檔題.20、(1)(2)【解析】試題分析:(1)由函數(shù)和的圖象關(guān)于原點(diǎn)對稱可得的表達(dá)式,再去掉絕對值即可解不等式;(2)對,不等式成立等價(jià)于,去絕對值得不等式組,即可求得實(shí)數(shù)的取值范圍.試題解析:(1)∵函數(shù)和的圖象關(guān)于原點(diǎn)對稱,∴,∴原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需,解得,的取值范圍是.21、(1);(2)【解析】
(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2)將直線參數(shù)方程代入圓的普通方程,可得,,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度新能源項(xiàng)目投資合作擔(dān)保合同范本4篇
- 2025年度征收城市集體土地上房屋征收補(bǔ)償與回遷安置合同范本4篇
- 2025年度不動產(chǎn)登記測量合同范本(含電子數(shù)據(jù)交換)4篇
- 專業(yè)油漆工程包工包料合同書2024版版B版
- 2025年度貓咪寵物慈善救助與捐贈合同4篇
- 二零二五年度樓頂戶外休閑設(shè)施租賃合同范本4篇
- 2025年度荒山承包權(quán)買賣合同(生態(tài)農(nóng)業(yè)綜合體建設(shè))
- 二零二五年度茶葉產(chǎn)品售后服務(wù)與技術(shù)支持合同協(xié)議
- 2025年度競業(yè)禁止協(xié)議及產(chǎn)品研發(fā)保密合同
- 2025年度高端別墅裝修設(shè)計(jì)委托合同
- 孩子改名字父母一方委托書
- 2024-2025學(xué)年人教版初中物理九年級全一冊《電與磁》單元測試卷(原卷版)
- 江蘇單招英語考綱詞匯
- 礦山隱蔽致災(zāi)普查治理報(bào)告
- 2024年事業(yè)單位財(cái)務(wù)工作計(jì)劃例文(6篇)
- PDCA循環(huán)提高護(hù)士培訓(xùn)率
- 2024年工程咨詢服務(wù)承諾書
- 青桔單車保險(xiǎn)合同條例
- 車輛使用不過戶免責(zé)協(xié)議書范文范本
- 《獅子王》電影賞析
- 2023-2024學(xué)年天津市部分區(qū)九年級(上)期末物理試卷
評論
0/150
提交評論