版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年陜西省四校聯(lián)考高三第六次模擬考試數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則()A. B. C. D.2.若時,,則的取值范圍為()A. B. C. D.3.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.74.設等差數(shù)列的前項和為,若,則()A.10 B.9 C.8 D.75.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種6.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.37.執(zhí)行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.8.已知復數(shù),則對應的點在復平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知函數(shù),若關于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.10.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)11.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.12.設函數(shù),若函數(shù)有三個零點,則()A.12 B.11 C.6 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的前項和為,且,則______.14.己知函數(shù),若關于的不等式對任意的恒成立,則實數(shù)的取值范圍是______.15.已知雙曲線()的左右焦點分別為,為坐標原點,點為雙曲線右支上一點,若,,則雙曲線的離心率的取值范圍為_____.16.已知雙曲線C:()的左、右焦點為,,為雙曲線C上一點,且,若線段與雙曲線C交于另一點A,則的面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是直角梯形且∥,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大?。唬?)若,且直線與平面所成角為,求的值.18.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,滿足,,,,恰為等比數(shù)列的前3項.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.19.(12分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點.(1)求證:.(2)若,求二面角的余弦值.20.(12分)設函數(shù).(1)當時,解不等式;(2)設,且當時,不等式有解,求實數(shù)的取值范圍.21.(12分)設函數(shù).(1)當時,求不等式的解集;(2)當時,求實數(shù)的取值范圍.22.(10分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.2、D【解析】
由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數(shù)的綜合應用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.3、B【解析】
先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎題4、B【解析】
根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點睛】本題考查了等差數(shù)列的求和,意在考查學生的計算能力.5、D【解析】
采取分類計數(shù)和分步計數(shù)相結合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題6、A【解析】
根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標,再求出向量的坐標,根據(jù)向量數(shù)量積的坐標運算求出結果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數(shù)圖象求出坐標,再根據(jù)向量數(shù)量積的坐標運算可得結果,屬于簡單題.7、B【解析】
根據(jù)程序框圖知當時,循環(huán)終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.8、A【解析】
利用復數(shù)除法運算化簡,由此求得對應點所在象限.【詳解】依題意,對應點為,在第一象限.故選A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應點的坐標所在象限,屬于基礎題.9、B【解析】
利用換元法設,則等價為有且只有一個實數(shù)根,分三種情況進行討論,結合函數(shù)的圖象,求出的取值范圍.【詳解】解:設,則有且只有一個實數(shù)根.當時,當時,,由即,解得,結合圖象可知,此時當時,得,則是唯一解,滿足題意;當時,此時當時,,此時函數(shù)有無數(shù)個零點,不符合題意;當時,當時,,此時最小值為,結合圖象可知,要使得關于的方程有且只有一個實數(shù)根,此時.綜上所述:或.故選:A.【點睛】本題考查了函數(shù)方程根的個數(shù)的應用.利用換元法,數(shù)形結合是解決本題的關鍵.10、B【解析】
根據(jù)題意分析的圖像關于直線對稱,即可得到的單調(diào)區(qū)間,利用對稱性以及單調(diào)性即可得到的取值范圍?!驹斀狻扛鶕?jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關于直線對稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應用,有一定綜合性,屬于中檔題。11、D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結合圖中數(shù)據(jù)知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.屬于中等題.12、B【解析】
畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點個數(shù),然后轉(zhuǎn)化求解,即可得出結果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關于的方程的解有兩個或三個(時有三個,時有兩個),所以關于的方程只能有一個根(若有兩個根,則關于的方程有四個或五個根),由,可得的值分別為,則故選B.【點睛】本題考查數(shù)形結合以及函數(shù)與方程的應用,考查轉(zhuǎn)化思想以及計算能力,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)等差數(shù)列的性質(zhì)求得,結合等差數(shù)列前項和公式求得的值.【詳解】因為為等差數(shù)列,所以,解得,所以.故答案為:【點睛】本小題考查等差數(shù)列的性質(zhì),前項和公式的應用等基礎知識;考查運算求解能力,應用意識.14、【解析】
首先判斷出函數(shù)為定義在上的奇函數(shù),且在定義域上單調(diào)遞增,由此不等式對任意的恒成立,可轉(zhuǎn)化為在上恒成立,進而建立不等式組,解出即可得到答案.【詳解】解:函數(shù)的定義域為,且,函數(shù)為奇函數(shù),當時,函數(shù),顯然此時函數(shù)為增函數(shù),函數(shù)為定義在上的增函數(shù),不等式即為,在上恒成立,,解得.故答案為.【點睛】本題考查函數(shù)單調(diào)性及奇偶性的綜合運用,考查不等式的恒成立問題,屬于常規(guī)題目.15、【解析】
法一:根據(jù)直角三角形的性質(zhì)和勾股定理得,,,又由雙曲線的定義得,將離心率表示成關于的式子,再令,則,令對函數(shù)求導研究函數(shù)在上單調(diào)性,可求得離心率的范圍.法二:令,,,,,根據(jù)直角三角形的性質(zhì)和勾股定理得,將離心率表示成關于角的三角函數(shù),根據(jù)三角函數(shù)的恒等變化轉(zhuǎn)化為關于的函數(shù),可求得離心率的范圍.【詳解】法一:,,,,,,設,則,令,所以時,,在上單調(diào)遞增,,,.法二:,,令,,,,,,,,,.故答案為:.【點睛】本題考查求雙曲線的離心率的范圍的問題,關鍵在于將已知條件轉(zhuǎn)化為與雙曲線的有關,從而將離心率表示關于某個量的函數(shù),屬于中檔題.16、【解析】
由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點A坐標,借助,即可解得所求.【詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,,所以點A坐標為,所以.【點睛】本題主要考查直線與雙曲線的位置關系,考查雙曲線方程的求解,考查求三角形面積,考查學生的計算能力,難度較難.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)分別取的中點為,易得兩兩垂直,以所在直線為軸建立空間直角坐標系,易得為平面的法向量,只需求出平面的法向量為,再利用計算即可;(2)求出,利用計算即可.【詳解】(1)分別取的中點為,連結.因為∥,所以∥.因為,所以.因為側(cè)面為等邊三角形,所以又因為平面平面,平面平面,平面,所以平面,所以兩兩垂直.以為空間坐標系的原點,分別以所在直線為軸建立如圖所示的空間直角坐標系,因為,則,,.設平面的法向量為,則,即.取,則,所以.又為平面的法向量,設平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面的法向量為,所以成.又直線與平面所成角為,所以,即,即,化簡得,所以,符合題意.【點睛】本題考查利用向量坐標法求面面角、線面角,涉及到面面垂直的性質(zhì)定理的應用,做好此類題的關鍵是準確寫出點的坐標,是一道中檔題.18、(2),(2),的最大整數(shù)是2.(3)存在,【解析】
(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因為,,為等比數(shù)列,所以,化簡計算得,,從而得到數(shù)列的通項公式,再計算出,,,從而可求出數(shù)列的通項公式;(2)令,化簡計算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個可看成一個數(shù)列的前項和,再寫出其前()項和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當時,,即當時,①②①-②得,整理得,又因為各項均為正數(shù)的數(shù)列.故是從第二項的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項,故,解得.又,故,因為也成立.故是以為首項,2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項,故是以為首項,公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對均滿足,只要的最小值大于即可因為的最小值為,所以,所以的最大整數(shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點睛】此題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,最值,恒成立問題,考查了推理能力與計算能力,屬于中檔題.19、(1)見解析(2)【解析】
(1)由已知可證明平面,從而得證面面垂直,再由,得線面垂直,從而得,由直角三角形得結論;(2)以為軸建立空間直角坐標系,用空間向量法示二面角.【詳解】(1)證明:連接,,.,,平面.平面,平面平面.,為的中點,.平面平面,平面.平面,.為斜邊的中點,,(2),由(1)可知,為等腰直角三角形,則.以為坐標原點建立如圖所示的空間直角坐標系,則,,,,則,記平面的法向量為由得到,取,可得,則.易知平面的法向量為.記二面角的平面角為,且由圖可知為銳角,則,所以二面角的余弦值為.【點睛】本題考查用面面垂直的性質(zhì)定理證明線面垂直,從而得線線垂直,考查用空間向量法求二面角.在立體幾何中求異面直線成的角、直線與平面所成的角、二面角等空間角時,可以建立空間直角坐標系,用空間向量法求解空間角,可避免空間角的作證過程,通過計算求解.20、(1);(2).【解析】
(1)通過分類討論去掉絕對值符號,進而解不等式組求得結果;(2)將不等式整理為,根據(jù)能成立思想可知,由此構造不等式求得結果.【詳解】(1)當時,可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實數(shù)的取值范圍是.【點睛】本題考查絕對值不等式的求解、根據(jù)不等式有解求解參數(shù)范圍的問題;關鍵是明確對于不等式能成立的問題,通過分離變量的方式將問題轉(zhuǎn)化為所求參數(shù)與函數(shù)最值之間的比較問題.21、(1)(2)當時,的取值范圍為;當時,的取值范圍為.【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025標準的攝影作品使用許可合同
- 二零二五年度凈水器綠色環(huán)保認證采購合同
- 2025年度文化產(chǎn)業(yè)分紅合作協(xié)議范本(含IP授權)3篇
- 2025年度公司設立前股東合作協(xié)議書(含知識產(chǎn)權保護)3篇
- 2025年度公司股東間應急事件處理合作協(xié)議書3篇
- 2025年度農(nóng)產(chǎn)品電商平臺農(nóng)產(chǎn)品物流配送優(yōu)化合同版3篇
- 2025年度農(nóng)機租賃與農(nóng)業(yè)科研合作開發(fā)合同3篇
- 二零二五年度農(nóng)村宅基地租賃及土地流轉(zhuǎn)服務協(xié)議
- 2025年度農(nóng)產(chǎn)品深加工項目原料供應合同版3篇
- 二零二五年度婚慶服務市場區(qū)域保護競業(yè)禁止合同2篇
- GB/T 13914-2013沖壓件尺寸公差
- BB/T 0045-2021紙漿模塑制品工業(yè)品包裝
- 《信息檢索實驗》課程教學大綱
- 連退生產(chǎn)過程操作優(yōu)化-質(zhì)量預報監(jiān)測及診斷
- 梅毒專題知識培訓
- 小說閱讀抓住矛盾沖突參考資料課件
- 簡約企業(yè)報刊報紙設計排版word模板
- 矛盾糾紛排查化解登記表
- 大班科學活動 有害的噪音
- 建筑施工成品保護措施
- 魚骨圖PPT模板精品教案0002
評論
0/150
提交評論