江蘇省東臺市民辦校聯(lián)盟重點中學2024年中考數(shù)學最后沖刺模擬試卷含解析_第1頁
江蘇省東臺市民辦校聯(lián)盟重點中學2024年中考數(shù)學最后沖刺模擬試卷含解析_第2頁
江蘇省東臺市民辦校聯(lián)盟重點中學2024年中考數(shù)學最后沖刺模擬試卷含解析_第3頁
江蘇省東臺市民辦校聯(lián)盟重點中學2024年中考數(shù)學最后沖刺模擬試卷含解析_第4頁
江蘇省東臺市民辦校聯(lián)盟重點中學2024年中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省東臺市民辦校聯(lián)盟重點中學2024年中考數(shù)學最后沖刺模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.衡陽市某生態(tài)示范園計劃種植一批梨樹,原計劃總產(chǎn)值30萬千克,為了滿足市場需求,現(xiàn)決定改良梨樹品種,改良后平均每畝產(chǎn)量是原來的1.5倍,總產(chǎn)量比原計劃增加了6萬千克,種植畝數(shù)減少了10畝,則原來平均每畝產(chǎn)量是多少萬千克?設(shè)原來平均每畝產(chǎn)量為萬千克,根據(jù)題意,列方程為A. B.C. D.2.如圖,在邊長為3的等邊三角形ABC中,過點C垂直于BC的直線交∠ABC的平分線于點P,則點P到邊AB所在直線的距離為()A.33 B.32 C.3.在﹣3,﹣1,0,1四個數(shù)中,比﹣2小的數(shù)是()A.﹣3 B.﹣1 C.0 D.14.如圖,將邊長為8㎝的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN的長是()A.3cm B.4cm C.5cm D.6cm5.某市從今年1月1日起調(diào)整居民用水價格,每立方米水費上漲.小麗家去年12月份的水費是15元,而今年5月的水費則是10元.已知小麗家今年5月的用水量比去年12月的用水量多5m1.求該市今年居民用水的價格.設(shè)去年居民用水價格為x元/m1,根據(jù)題意列方程,正確的是()A. B.C. D.6.△ABC在正方形網(wǎng)格中的位置如圖所示,則cosB的值為()A. B. C. D.27.如圖,正方形ABCD中,AB=6,G是BC的中點.將△ABG沿AG對折至△AFG,延長GF交DC于點E,則DE的長是()A.1 B.1.5 C.2 D.2.58.對于點A(x1,y1),B(x2,y2),定義一種運算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四點C,D,E,F(xiàn),滿足,則C,D,E,F(xiàn)四點【】A.在同一條直線上B.在同一條拋物線上C.在同一反比例函數(shù)圖象上D.是同一個正方形的四個頂點9.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點M、N;②作直線MN交AB于點D,連接CD,則下列結(jié)論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB10.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.當點B的對應(yīng)點D恰好落在AC上時,∠CAE的度數(shù)是()A.30° B.40° C.50° D.60°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運動,當⊙P與x軸相切時,圓心P的坐標為_____.12.關(guān)于的分式方程的解為負數(shù),則的取值范圍是_________.13.高速公路某收費站出城方向有編號為的五個小客車收費出口,假定各收費出口每20分鐘通過小客車的數(shù)量分別都是不變的.同時開放其中的某兩個收費出口,這兩個出口20分鐘一共通過的小客車數(shù)量記錄如下:收費出口編號通過小客車數(shù)量(輛)260330300360240在五個收費出口中,每20分鐘通過小客車數(shù)量最多的一個出口的編號是___________.14.空氣質(zhì)量指數(shù),簡稱AQI,如果AQI在0~50空氣質(zhì)量類別為優(yōu),在51~100空氣質(zhì)量類別為良,在101~150空氣質(zhì)量類別為輕度污染,按照某市最近一段時間的AQI畫出的頻數(shù)分布直方圖如圖所示.已知每天的AQI都是整數(shù),那么空氣質(zhì)量類別為優(yōu)和良的天數(shù)共占總天數(shù)的百分比為______%.15.將2.05×10﹣3用小數(shù)表示為__.16.在平面直角坐標系中,點A(2,3)繞原點O逆時針旋轉(zhuǎn)90°的對應(yīng)點的坐標為_____.三、解答題(共8題,共72分)17.(8分)已知BD平分∠ABF,且交AE于點D.(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)設(shè)AP交BD于點O,交BF于點C,連接CD,當AC⊥BD時,求證:四邊形ABCD是菱形.18.(8分)已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.求證:BE=DF;連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.19.(8分)閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發(fā)現(xiàn);借助小胖同學總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).20.(8分)如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.(1)求證:DE是⊙O的切線;(2)若tanA=,探究線段AB和BE之間的數(shù)量關(guān)系,并證明;(3)在(2)的條件下,若OF=1,求圓O的半徑.21.(8分)如圖,已知直線AB與軸交于點C,與雙曲線交于A(3,)、B(-5,)兩點.AD⊥軸于點D,BE∥軸且與軸交于點E.求點B的坐標及直線AB的解析式;判斷四邊形CBED的形狀,并說明理由.22.(10分)如圖,一只螞蟻從點A沿數(shù)軸向右直爬2個單位到達點B,點A表示﹣,設(shè)點B所表示的數(shù)為m.求m的值;求|m﹣1|+(m+6)0的值.23.(12分)據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一.小強用所學知識對一條筆直公路上的車輛進行測速,如圖所示,觀測點C到公路的距離CD=200m,檢測路段的起點A位于點C的南偏東60°方向上,終點B位于點C的南偏東45°方向上.一輛轎車由東向西勻速行駛,測得此車由A處行駛到B處的時間為10s.問此車是否超過了該路段16m/s的限制速度?(觀測點C離地面的距離忽略不計,參考數(shù)據(jù):≈1.41,≈1.73)24.如圖,已知A,B兩點在數(shù)軸上,點A表示的數(shù)為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))數(shù)軸上點B對應(yīng)的數(shù)是______.經(jīng)過幾秒,點M、點N分別到原點O的距離相等?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)題意可得等量關(guān)系:原計劃種植的畝數(shù)改良后種植的畝數(shù)畝,根據(jù)等量關(guān)系列出方程即可.【詳解】設(shè)原計劃每畝平均產(chǎn)量萬千克,則改良后平均每畝產(chǎn)量為萬千克,根據(jù)題意列方程為:.故選:.【點睛】本題考查了由實際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系.2、D【解析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點:1.角平分線的性質(zhì);2.等邊三角形的性質(zhì);3.含30度角的直角三角形;4.勾股定理.3、A【解析】

因為正數(shù)是比0大的數(shù),負數(shù)是比0小的數(shù),正數(shù)比負數(shù)大;負數(shù)的絕對值越大,本身就越小,根據(jù)有理數(shù)比較大小的法則即可選出答案.【詳解】因為正數(shù)是比0大的數(shù),負數(shù)是比0小的數(shù),正數(shù)比負數(shù)大;負數(shù)的絕對值越大,本身就越小,所以在-3,-1,0,1這四個數(shù)中比-2小的數(shù)是-3,故選A.【點睛】本題主要考查有理數(shù)比較大小,解決本題的關(guān)鍵是要熟練掌握比較有理數(shù)大小的方法.4、A【解析】分析:根據(jù)折疊的性質(zhì),只要求出DN就可以求出NE,在直角△CEN中,若設(shè)CN=x,則DN=NE=8﹣x,CE=4cm,根據(jù)勾股定理就可以列出方程,從而解出CN的長.詳解:設(shè)CN=xcm,則DN=(8﹣x)cm,由折疊的性質(zhì)知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故選:A.點睛:此題主要考查了折疊問題,明確折疊問題其實質(zhì)是軸對稱,對應(yīng)線段相等,對應(yīng)角相等,通常用勾股定理解決折疊問題.5、A【解析】解:設(shè)去年居民用水價格為x元/cm1,根據(jù)題意列方程:,故選A.6、A【解析】

解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.7、C【解析】

連接AE,根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△AFE≌Rt△ADE,在直角△ECG中,根據(jù)勾股定理求出DE的長.【詳解】連接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折疊的性質(zhì)得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,設(shè)DE=FE=x,則CG=3,EC=6?x.在直角△ECG中,根據(jù)勾股定理,得:(6?x)2+9=(x+3)2,解得x=2.則DE=2.【點睛】熟練掌握翻折變換、正方形的性質(zhì)、全等三角形的判定與性質(zhì)是本題的解題關(guān)鍵.8、A。【解析】∵對于點A(x1,y1),B(x2,y2),,∴如果設(shè)C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6),那么,。又∵,∴?!?。令,則C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6)都在直線上,∴互不重合的四點C,D,E,F(xiàn)在同一條直線上。故選A。9、B【解析】

作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質(zhì)可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點睛】了解中垂線的作圖規(guī)則是解題的關(guān)鍵.10、C【解析】

由三角形內(nèi)角和定理可得∠ACB=80°,由旋轉(zhuǎn)的性質(zhì)可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質(zhì)可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、(,1)或(﹣,1)【解析】

根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標是1或-1.將P的縱坐標代入函數(shù)解析式,求P點坐標即可【詳解】根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標是1或-1.當y=1時,x1-1=1,解得x=±當y=-1時,x1-1=-1,方程無解故P點的坐標為()或(-)【點睛】此題注意應(yīng)考慮兩種情況.熟悉直線和圓的位置關(guān)系應(yīng)滿足的數(shù)量關(guān)系是解題的關(guān)鍵.12、【解析】

分式方程去分母轉(zhuǎn)化為整式方程,由分式方程的解為負數(shù),求出a的范圍即可【詳解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解為負數(shù),得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案為:a>1且a≠2【點睛】此題考查分式方程的解,解題關(guān)鍵在于求出x的值再進行分析13、B【解析】

利用同時開放其中的兩個安全出口,20分鐘所通過的小車的數(shù)量分析對比,能求出結(jié)果.【詳解】同時開放A、E兩個安全出口,與同時開放D、E兩個安全出口,20分鐘的通過數(shù)量發(fā)現(xiàn)得到D疏散乘客比A快;同理同時開放BC與CD進行對比,可知B疏散乘客比D快;同理同時開放BC與AB進行對比,可知C疏散乘客比A快;同理同時開放DE與CD進行對比,可知E疏散乘客比C快;同理同時開放AB與AE進行對比,可知B疏散乘客比E快;所以B口的速度最快故答案為B.【點睛】本題考查簡單的合理推理,考查推理論證能力等基礎(chǔ)知識,考查運用求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.14、80【解析】【分析】先求出AQI在0~50的頻數(shù),再根據(jù)%,求出百分比.【詳解】由圖可知AQI在0~50的頻數(shù)為10,所以,空氣質(zhì)量類別為優(yōu)和良的天數(shù)共占總天數(shù)的百分比為:%=80%..故答案為80【點睛】本題考核知識點:數(shù)據(jù)的分析.解題關(guān)鍵點:從統(tǒng)計圖獲取信息,熟記百分比計算方法.15、0.1【解析】試題解析:原式=2.05×10-3=0.1.【點睛】本題考查了科學記數(shù)法-原數(shù),用科學記數(shù)法表示的數(shù)還原成原數(shù)時,n>0時,n是幾,小數(shù)點就向右移幾位;n<0時,n是幾,小數(shù)點就向左移幾位.16、(﹣3,2)【解析】

作出圖形,然后寫出點A′的坐標即可.【詳解】解答:如圖,點A′的坐標為(-3,2).

故答案為(-3,2).

【點睛】本題考查的知識點是坐標與圖象變化-旋轉(zhuǎn),解題關(guān)鍵是注意利用數(shù)形結(jié)合的思想求解.三、解答題(共8題,共72分)17、(1)見解析:(2)見解析.【解析】試題分析:(1)根據(jù)角平分線的作法作出∠BAE的平分線AP即可;(2)先證明△ABO≌△CBO,得到AO=CO,AB=CB,再證明△ABO≌△ADO,得到BO=DO.由對角線互相平分的四邊形是平行四邊形及有一組鄰邊相等的平行四邊形是菱形即可證明四邊形ABCD是菱形.試題解析:(1)如圖所示:(2)如圖:在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四邊形ABCD是平行四邊形,∵AB=CB,∴平行四邊形ABCD是菱形.考點:1.菱形的判定;2.作圖—基本作圖.18、(1)證明見解析;(2)四邊形AEMF是菱形,證明見解析.【解析】

(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結(jié)論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質(zhì)可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相平分,再根據(jù)一組鄰邊相等的平行四邊形是菱形,即可判定四邊形AEMF是菱形.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四邊形AEMF是菱形,理由為:證明:∵四邊形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的對角線平分一組對角),BC=DC(正方形四條邊相等),∵BE=DF(已證),∴BC-BE=DC-DF(等式的性質(zhì)),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四邊形AEMF是平行四邊形(對角線互相平分的四邊形是平行四邊形),∵AE=AF,∴平行四邊形AEMF是菱形.19、(1)證明見解析;(2)證明見解析;(3)∠EAF=m°.【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明△DAB≌△EAC即可;(2)如圖2中,延長DC到E,使得DB=DE.首先證明△BDE是等邊三角形,再證明△ABD≌△CBE即可解決問題;(3)如圖3中,將AE繞點E逆時針旋轉(zhuǎn)m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.想辦法證明△AFE≌△AFG,可得∠EAF=∠FAG=m°.詳(1)證明:如圖1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)證明:如圖2中,延長DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等邊三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如圖3中,將AE繞點E逆時針旋轉(zhuǎn)m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=m°.點睛:本題考查幾何變換綜合題、旋轉(zhuǎn)變換、等腰三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會利用“手拉手”圖形中的全等三角形解決問題,學會構(gòu)造“手拉手”模型,解決實際問題,屬于中考壓軸題.20、(1)答案見解析;(2)AB=1BE;(1)1.【解析】試題分析:(1)先判斷出∠OCF+∠CFO=90°,再判斷出∠OCF=∠ODF,即可得出結(jié)論;(2)先判斷出∠BDE=∠A,進而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出結(jié)論;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x,進而得出OE=1+2x,最后用勾股定理即可得出結(jié)論.試題解析:(1)證明:連結(jié)OD,如圖.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵點D在⊙O上,∴DE是⊙O的切線;(2)線段AB、BE之間的數(shù)量關(guān)系為:AB=1BE.證明如下:∵AB為⊙O直徑,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圓O的半徑為1.點睛:本題是圓的綜合題,主要考查了切線的判定和性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù),相似三角形的判定和性質(zhì),勾股定理,判斷出△EBD∽△EDA是解答本題的關(guān)鍵.21、(1)點B的坐標是(-5,-4);直線AB的解析式為:(2)四邊形CBED是菱形.理由見解析【解析】

(1)根據(jù)反比例函數(shù)圖象上點的坐標特征,將點A代入雙曲線方程求得k值,即利用待定系數(shù)法求得雙曲線方程;然后將B點代入其中,從而求得a值;設(shè)直線AB的解析式為y=mx+n,將A、B兩點的坐標代入,利用待定系數(shù)法解答;(2)由點C、D的坐標、已知條件“BE∥x軸”及兩點間的距離公式求得,CD=5,BE=5,且BE∥CD,從而可以證明四邊形CBED是平行四邊形;然后在Rt△OED中根據(jù)勾股定理求得ED=5,所以ED=CD,從而證明四邊形CBED是菱形.【詳解】解:(1)∵雙曲線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論